Cargando…
ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles
Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI...
Autores principales: | Anene, Chinedu Anthony, Khan, Faraz, Bewicke-Copley, Findlay, Maniati, Eleni, Wang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212143/ https://www.ncbi.nlm.nih.gov/pubmed/34179848 http://dx.doi.org/10.1016/j.patter.2021.100270 |
Ejemplares similares
-
The Genomic Landscape of Actinic Keratosis
por: Thomson, Jason, et al.
Publicado: (2021) -
Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
por: De Freitas, Jessica K., et al.
Publicado: (2021) -
RNAi2015 – Ten years of RNAi Oxford
por: Bewicke-Copley, Findlay, et al.
Publicado: (2015) -
LHC physics dataset for unsupervised New Physics detection at 40 MHz
por: Govorkova, Ekaterina, et al.
Publicado: (2022) -
DOES - A multimodal dataset for supervised and unsupervised analysis of steel scrap
por: Schäfer, Michael, et al.
Publicado: (2023)