Cargando…
Prediction of Human-Plasmodium vivax Protein Associations From Heterogeneous Network Structures Based on Machine-Learning Approach
Malaria caused by Plasmodium vivax can lead to severe morbidity and death. In addition, resistance has been reported to existing drugs in treating this malaria. Therefore, the identification of new human proteins associated with malaria is urgently needed for the development of additional drugs. In...
Autores principales: | Suratanee, Apichat, Buaboocha, Teerapong, Plaimas, Kitiporn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212370/ https://www.ncbi.nlm.nih.gov/pubmed/34188457 http://dx.doi.org/10.1177/11779322211013350 |
Ejemplares similares
-
Heterogeneous Network Model to Identify Potential Associations Between Plasmodium vivax and Human Proteins
por: Suratanee, Apichat, et al.
Publicado: (2020) -
Hybrid Deep Learning Based on a Heterogeneous Network Profile for Functional Annotations of Plasmodium falciparum Genes
por: Suratanee, Apichat, et al.
Publicado: (2021) -
Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai Rice
por: Suratanee, Apichat, et al.
Publicado: (2018) -
Identification of Key Genes in ‘Luang Pratahn’, Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks
por: Sonsungsan, Pajaree, et al.
Publicado: (2021) -
Heterogeneous network propagation with forward similarity integration to enhance drug–target association prediction
por: Tangmanussukum, Piyanut, et al.
Publicado: (2022)