Cargando…
A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
Glioma is the most common primary central nervous system tumor, accounting for about half of all intracranial primary tumors. As a non-invasive examination method, MRI has an extremely important guiding role in the clinical intervention of tumors. However, manually segmenting brain tumors from MRI r...
Autores principales: | Huang, He, Yang, Guang, Zhang, Wenbo, Xu, Xiaomei, Yang, Weiji, Jiang, Weiwei, Lai, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212784/ https://www.ncbi.nlm.nih.gov/pubmed/34150660 http://dx.doi.org/10.3389/fonc.2021.690244 |
Ejemplares similares
-
3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework
por: Guan, Xi, et al.
Publicado: (2022) -
Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation
por: Ma, Shiqiang, et al.
Publicado: (2021) -
AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis
por: Yang, Minqiang, et al.
Publicado: (2022) -
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
por: Zhao, Tengfei, et al.
Publicado: (2023) -
A Deep Learning Image Data Augmentation Method for Single Tumor Segmentation
por: Zhang, Chunling, et al.
Publicado: (2022)