Cargando…
Freely Generated Word Responses Analyzed With Artificial Intelligence Predict Self-Reported Symptoms of Depression, Anxiety, and Worry
BACKGROUND: Question-based computational language assessments (QCLA) of mental health, based on self-reported and freely generated word responses and analyzed with artificial intelligence, is a potential complement to rating scales for identifying mental health issues. This study aimed to examine to...
Autores principales: | Kjell, Katarina, Johnsson, Per, Sikström, Sverker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212927/ https://www.ncbi.nlm.nih.gov/pubmed/34149500 http://dx.doi.org/10.3389/fpsyg.2021.602581 |
Ejemplares similares
-
Natural language analyzed with AI-based transformers predict traditional subjective well-being measures approaching the theoretical upper limits in accuracy
por: Kjell, Oscar N. E., et al.
Publicado: (2022) -
Computational Language Assessments of Harmony in Life — Not Satisfaction With Life or Rating Scales — Correlate With Cooperative Behaviors
por: Kjell, Oscar, et al.
Publicado: (2021) -
Precise language responses versus easy rating scales—Comparing respondents’ views with clinicians’ belief of the respondent’s views
por: Sikström, Sverker, et al.
Publicado: (2023) -
Artificial Intelligence-Aided Massively Parallel Spectroscopy
of Freely Diffusing Nanoscale Entities
por: Hlaváček, Antonín, et al.
Publicado: (2023) -
Worry and Metacognitions as Predictors of Anxiety Symptoms: A Prospective Study
por: Ryum, Truls, et al.
Publicado: (2017)