Cargando…

Radiogenomics in brain, breast, and lung cancer: opportunities and challenges

The field of radiogenomics largely focuses on developing imaging surrogates for genomic signatures and integrating imaging, genomic, and molecular data to develop combined personalized biomarkers for characterizing various diseases. Our study aims to highlight the current state-of-the-art and the ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Apurva, Chitalia, Rhea, Kontos, Despina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212946/
https://www.ncbi.nlm.nih.gov/pubmed/34164563
http://dx.doi.org/10.1117/1.JMI.8.3.031907
Descripción
Sumario:The field of radiogenomics largely focuses on developing imaging surrogates for genomic signatures and integrating imaging, genomic, and molecular data to develop combined personalized biomarkers for characterizing various diseases. Our study aims to highlight the current state-of-the-art and the role of radiogenomics in cancer research, focusing mainly on solid tumors, and is broadly divided into four sections. The first section reviews representative studies that establish the biologic basis of radiomic signatures using gene expression and molecular profiling information. The second section includes studies that aim to non-invasively predict molecular subtypes of tumors using radiomic signatures. The third section reviews studies that evaluate the potential to augment the performance of established prognostic signatures by combining complementary information encoded by radiomic and genomic signatures derived from cancer tumors. The fourth section includes studies that focus on ascertaining the biological significance of radiomic phenotypes. We conclude by discussing current challenges and opportunities in the field, such as the importance of coordination between imaging device manufacturers, regulatory organizations, health care providers, pharmaceutical companies, academic institutions, and physicians for the effective standardization of the results from radiogenomic signatures and for the potential use of these findings to improve precision care for cancer patients.