Cargando…

A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels

Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoke, Xing, Yufeng, Zhou, Daqiao, Xiao, Huanming, Zhou, Zhenhua, Han, Zhiyi, Sun, Xuehua, Li, Shuo, Zhang, Ludan, Li, Zhiguo, Zhang, Peng, Zhang, Jiaxin, Zhang, Ningyi, Cao, Xu, Zao, Xiaobin, Du, Hongbo, Tong, Guangdong, Chi, Xiaoling, Gao, Yueqiu, Ye, Yong'an
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213212/
https://www.ncbi.nlm.nih.gov/pubmed/34150818
http://dx.doi.org/10.3389/fmed.2021.688091
_version_ 1783709795637788672
author Li, Xiaoke
Xing, Yufeng
Zhou, Daqiao
Xiao, Huanming
Zhou, Zhenhua
Han, Zhiyi
Sun, Xuehua
Li, Shuo
Zhang, Ludan
Li, Zhiguo
Zhang, Peng
Zhang, Jiaxin
Zhang, Ningyi
Cao, Xu
Zao, Xiaobin
Du, Hongbo
Tong, Guangdong
Chi, Xiaoling
Gao, Yueqiu
Ye, Yong'an
author_facet Li, Xiaoke
Xing, Yufeng
Zhou, Daqiao
Xiao, Huanming
Zhou, Zhenhua
Han, Zhiyi
Sun, Xuehua
Li, Shuo
Zhang, Ludan
Li, Zhiguo
Zhang, Peng
Zhang, Jiaxin
Zhang, Ningyi
Cao, Xu
Zao, Xiaobin
Du, Hongbo
Tong, Guangdong
Chi, Xiaoling
Gao, Yueqiu
Ye, Yong'an
author_sort Li, Xiaoke
collection PubMed
description Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant liver inflammation. Method: A total of 504 CHB patients who had undergone liver biopsy with normal ALT levels were randomized into a training set (n = 310) and a validation set (n = 194). Independent variables were analyzed by stepwise logistic regression analysis. After the predictive model for diagnosing significant inflammation (Scheuer's system, G ≥ 2) was established, a nomogram was generated. Discrimination and calibration aspects of the model were measured using the area under the receiver operating characteristic curve (AUC) and assessment of a calibration curve. Clinical significance was evaluated by decision curve analysis (DCA). Result: The model was composed of 4 variables: aspartate aminotransferase (AST) levels, γ-glutamyl transpeptidase (GGT) levels, hepatitis B surface antigen (HBsAg) levels, and platelet (PLT) counts. Good discrimination and calibration of the model were observed in the training and validation sets (AUC = 0.87 and 0.86, respectively). The best cutoff point for the model was 0.12, where the specificity was 83.43%, the sensitivity was 77.42%, and the positive likelihood and negative likelihood ratios were 4.67 and 0.27, respectively. The model's predictive capability was superior to that of each single indicator. Conclusion: This study provides a non-invasive approach for predicting significant liver inflammation in CHB patients with normal ALT. Nomograms may help to identify target patients to allow timely initiation of antiviral treatment.
format Online
Article
Text
id pubmed-8213212
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-82132122021-06-19 A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels Li, Xiaoke Xing, Yufeng Zhou, Daqiao Xiao, Huanming Zhou, Zhenhua Han, Zhiyi Sun, Xuehua Li, Shuo Zhang, Ludan Li, Zhiguo Zhang, Peng Zhang, Jiaxin Zhang, Ningyi Cao, Xu Zao, Xiaobin Du, Hongbo Tong, Guangdong Chi, Xiaoling Gao, Yueqiu Ye, Yong'an Front Med (Lausanne) Medicine Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant liver inflammation. Method: A total of 504 CHB patients who had undergone liver biopsy with normal ALT levels were randomized into a training set (n = 310) and a validation set (n = 194). Independent variables were analyzed by stepwise logistic regression analysis. After the predictive model for diagnosing significant inflammation (Scheuer's system, G ≥ 2) was established, a nomogram was generated. Discrimination and calibration aspects of the model were measured using the area under the receiver operating characteristic curve (AUC) and assessment of a calibration curve. Clinical significance was evaluated by decision curve analysis (DCA). Result: The model was composed of 4 variables: aspartate aminotransferase (AST) levels, γ-glutamyl transpeptidase (GGT) levels, hepatitis B surface antigen (HBsAg) levels, and platelet (PLT) counts. Good discrimination and calibration of the model were observed in the training and validation sets (AUC = 0.87 and 0.86, respectively). The best cutoff point for the model was 0.12, where the specificity was 83.43%, the sensitivity was 77.42%, and the positive likelihood and negative likelihood ratios were 4.67 and 0.27, respectively. The model's predictive capability was superior to that of each single indicator. Conclusion: This study provides a non-invasive approach for predicting significant liver inflammation in CHB patients with normal ALT. Nomograms may help to identify target patients to allow timely initiation of antiviral treatment. Frontiers Media S.A. 2021-06-04 /pmc/articles/PMC8213212/ /pubmed/34150818 http://dx.doi.org/10.3389/fmed.2021.688091 Text en Copyright © 2021 Li, Xing, Zhou, Xiao, Zhou, Han, Sun, Li, Zhang, Li, Zhang, Zhang, Zhang, Cao, Zao, Du, Tong, Chi, Gao and Ye. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Li, Xiaoke
Xing, Yufeng
Zhou, Daqiao
Xiao, Huanming
Zhou, Zhenhua
Han, Zhiyi
Sun, Xuehua
Li, Shuo
Zhang, Ludan
Li, Zhiguo
Zhang, Peng
Zhang, Jiaxin
Zhang, Ningyi
Cao, Xu
Zao, Xiaobin
Du, Hongbo
Tong, Guangdong
Chi, Xiaoling
Gao, Yueqiu
Ye, Yong'an
A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title_full A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title_fullStr A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title_full_unstemmed A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title_short A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
title_sort non-invasive model for predicting liver inflammation in chronic hepatitis b patients with normal serum alanine aminotransferase levels
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213212/
https://www.ncbi.nlm.nih.gov/pubmed/34150818
http://dx.doi.org/10.3389/fmed.2021.688091
work_keys_str_mv AT lixiaoke anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT xingyufeng anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhoudaqiao anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT xiaohuanming anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhouzhenhua anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT hanzhiyi anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT sunxuehua anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT lishuo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangludan anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT lizhiguo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangpeng anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangjiaxin anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangningyi anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT caoxu anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zaoxiaobin anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT duhongbo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT tongguangdong anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT chixiaoling anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT gaoyueqiu anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT yeyongan anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT lixiaoke noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT xingyufeng noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhoudaqiao noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT xiaohuanming noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhouzhenhua noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT hanzhiyi noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT sunxuehua noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT lishuo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangludan noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT lizhiguo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangpeng noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangjiaxin noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zhangningyi noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT caoxu noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT zaoxiaobin noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT duhongbo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT tongguangdong noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT chixiaoling noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT gaoyueqiu noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels
AT yeyongan noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels