Cargando…
A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels
Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213212/ https://www.ncbi.nlm.nih.gov/pubmed/34150818 http://dx.doi.org/10.3389/fmed.2021.688091 |
_version_ | 1783709795637788672 |
---|---|
author | Li, Xiaoke Xing, Yufeng Zhou, Daqiao Xiao, Huanming Zhou, Zhenhua Han, Zhiyi Sun, Xuehua Li, Shuo Zhang, Ludan Li, Zhiguo Zhang, Peng Zhang, Jiaxin Zhang, Ningyi Cao, Xu Zao, Xiaobin Du, Hongbo Tong, Guangdong Chi, Xiaoling Gao, Yueqiu Ye, Yong'an |
author_facet | Li, Xiaoke Xing, Yufeng Zhou, Daqiao Xiao, Huanming Zhou, Zhenhua Han, Zhiyi Sun, Xuehua Li, Shuo Zhang, Ludan Li, Zhiguo Zhang, Peng Zhang, Jiaxin Zhang, Ningyi Cao, Xu Zao, Xiaobin Du, Hongbo Tong, Guangdong Chi, Xiaoling Gao, Yueqiu Ye, Yong'an |
author_sort | Li, Xiaoke |
collection | PubMed |
description | Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant liver inflammation. Method: A total of 504 CHB patients who had undergone liver biopsy with normal ALT levels were randomized into a training set (n = 310) and a validation set (n = 194). Independent variables were analyzed by stepwise logistic regression analysis. After the predictive model for diagnosing significant inflammation (Scheuer's system, G ≥ 2) was established, a nomogram was generated. Discrimination and calibration aspects of the model were measured using the area under the receiver operating characteristic curve (AUC) and assessment of a calibration curve. Clinical significance was evaluated by decision curve analysis (DCA). Result: The model was composed of 4 variables: aspartate aminotransferase (AST) levels, γ-glutamyl transpeptidase (GGT) levels, hepatitis B surface antigen (HBsAg) levels, and platelet (PLT) counts. Good discrimination and calibration of the model were observed in the training and validation sets (AUC = 0.87 and 0.86, respectively). The best cutoff point for the model was 0.12, where the specificity was 83.43%, the sensitivity was 77.42%, and the positive likelihood and negative likelihood ratios were 4.67 and 0.27, respectively. The model's predictive capability was superior to that of each single indicator. Conclusion: This study provides a non-invasive approach for predicting significant liver inflammation in CHB patients with normal ALT. Nomograms may help to identify target patients to allow timely initiation of antiviral treatment. |
format | Online Article Text |
id | pubmed-8213212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82132122021-06-19 A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels Li, Xiaoke Xing, Yufeng Zhou, Daqiao Xiao, Huanming Zhou, Zhenhua Han, Zhiyi Sun, Xuehua Li, Shuo Zhang, Ludan Li, Zhiguo Zhang, Peng Zhang, Jiaxin Zhang, Ningyi Cao, Xu Zao, Xiaobin Du, Hongbo Tong, Guangdong Chi, Xiaoling Gao, Yueqiu Ye, Yong'an Front Med (Lausanne) Medicine Background and Aims: Chronic hepatitis B (CHB) patients with normal alanine aminotransferase (ALT) levels are at risk of disease progression. Currently, liver biopsy is suggested to identify this population. We aimed to establish a non-invasive diagnostic model to identify patients with significant liver inflammation. Method: A total of 504 CHB patients who had undergone liver biopsy with normal ALT levels were randomized into a training set (n = 310) and a validation set (n = 194). Independent variables were analyzed by stepwise logistic regression analysis. After the predictive model for diagnosing significant inflammation (Scheuer's system, G ≥ 2) was established, a nomogram was generated. Discrimination and calibration aspects of the model were measured using the area under the receiver operating characteristic curve (AUC) and assessment of a calibration curve. Clinical significance was evaluated by decision curve analysis (DCA). Result: The model was composed of 4 variables: aspartate aminotransferase (AST) levels, γ-glutamyl transpeptidase (GGT) levels, hepatitis B surface antigen (HBsAg) levels, and platelet (PLT) counts. Good discrimination and calibration of the model were observed in the training and validation sets (AUC = 0.87 and 0.86, respectively). The best cutoff point for the model was 0.12, where the specificity was 83.43%, the sensitivity was 77.42%, and the positive likelihood and negative likelihood ratios were 4.67 and 0.27, respectively. The model's predictive capability was superior to that of each single indicator. Conclusion: This study provides a non-invasive approach for predicting significant liver inflammation in CHB patients with normal ALT. Nomograms may help to identify target patients to allow timely initiation of antiviral treatment. Frontiers Media S.A. 2021-06-04 /pmc/articles/PMC8213212/ /pubmed/34150818 http://dx.doi.org/10.3389/fmed.2021.688091 Text en Copyright © 2021 Li, Xing, Zhou, Xiao, Zhou, Han, Sun, Li, Zhang, Li, Zhang, Zhang, Zhang, Cao, Zao, Du, Tong, Chi, Gao and Ye. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Li, Xiaoke Xing, Yufeng Zhou, Daqiao Xiao, Huanming Zhou, Zhenhua Han, Zhiyi Sun, Xuehua Li, Shuo Zhang, Ludan Li, Zhiguo Zhang, Peng Zhang, Jiaxin Zhang, Ningyi Cao, Xu Zao, Xiaobin Du, Hongbo Tong, Guangdong Chi, Xiaoling Gao, Yueqiu Ye, Yong'an A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title | A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title_full | A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title_fullStr | A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title_full_unstemmed | A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title_short | A Non-invasive Model for Predicting Liver Inflammation in Chronic Hepatitis B Patients With Normal Serum Alanine Aminotransferase Levels |
title_sort | non-invasive model for predicting liver inflammation in chronic hepatitis b patients with normal serum alanine aminotransferase levels |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213212/ https://www.ncbi.nlm.nih.gov/pubmed/34150818 http://dx.doi.org/10.3389/fmed.2021.688091 |
work_keys_str_mv | AT lixiaoke anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT xingyufeng anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhoudaqiao anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT xiaohuanming anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhouzhenhua anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT hanzhiyi anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT sunxuehua anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT lishuo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangludan anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT lizhiguo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangpeng anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangjiaxin anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangningyi anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT caoxu anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zaoxiaobin anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT duhongbo anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT tongguangdong anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT chixiaoling anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT gaoyueqiu anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT yeyongan anoninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT lixiaoke noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT xingyufeng noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhoudaqiao noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT xiaohuanming noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhouzhenhua noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT hanzhiyi noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT sunxuehua noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT lishuo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangludan noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT lizhiguo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangpeng noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangjiaxin noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zhangningyi noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT caoxu noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT zaoxiaobin noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT duhongbo noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT tongguangdong noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT chixiaoling noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT gaoyueqiu noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels AT yeyongan noninvasivemodelforpredictingliverinflammationinchronichepatitisbpatientswithnormalserumalanineaminotransferaselevels |