Cargando…

Structural insights into the recognition of histone H3Q5 serotonylation by WDR5

Serotonylation of histone H3Q5 (H3Q5ser) is a recently identified posttranslational modification of histones that acts as a permissive marker for gene activation in synergy with H3K4me3 during neuronal cell differentiation. However, any proteins that specifically recognize H3Q5ser remain unknown. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jie, Chen, Wanbiao, Pan, Yi, Zhang, Yinfeng, Sun, Huiying, Wang, Han, Yang, Fan, Liu, Yu, Shen, Nan, Zhang, Xuan, Mo, Xi, Zang, Jianye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213231/
https://www.ncbi.nlm.nih.gov/pubmed/34144982
http://dx.doi.org/10.1126/sciadv.abf4291
Descripción
Sumario:Serotonylation of histone H3Q5 (H3Q5ser) is a recently identified posttranslational modification of histones that acts as a permissive marker for gene activation in synergy with H3K4me3 during neuronal cell differentiation. However, any proteins that specifically recognize H3Q5ser remain unknown. Here, we found that WDR5 interacts with the N-terminal tail of histone H3 and functions as a “reader” for H3Q5ser. Crystal structures of WDR5 in complex with H3Q5ser and H3K4me3Q5ser peptides revealed that the serotonyl group is accommodated in a shallow surface pocket of WDR5. Experiments in neuroblastoma cells demonstrate that H3K4me3 modification is hampered upon disruption of WDR5-H3Q5ser interaction. WDR5 colocalizes with H3Q5ser in the promoter regions of cancer-promoting genes in neuroblastoma cells, where it promotes gene transcription to induce cell proliferation. Thus, beyond revealing a previously unknown mechanism through which WDR5 reads H3Q5ser to activate transcription, our study suggests that this WDR5-H3Q5ser–mediated epigenetic regulation apparently promotes tumorigenesis.