Cargando…
Machine learning enhances the performance of short and long-term mortality prediction model in non-ST-segment elevation myocardial infarction
Machine learning (ML) has been suggested to improve the performance of prediction models. Nevertheless, research on predicting the risk in patients with acute myocardial infarction (AMI) has been limited and showed inconsistency in the performance of ML models versus traditional models (TMs). This s...
Autores principales: | Lee, Woojoo, Lee, Joongyub, Woo, Seoung-Il, Choi, Seong Huan, Bae, Jang-Whan, Jung, Seungpil, Jeong, Myung Ho, Lee, Won Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213755/ https://www.ncbi.nlm.nih.gov/pubmed/34145358 http://dx.doi.org/10.1038/s41598-021-92362-1 |
Ejemplares similares
-
Etiologies and Predictors of ST-Segment Elevation Myocardial Infarction
por: Bae, Myung Hwan, et al.
Publicado: (2013) -
Mechanical complications of ST segment elevation myocardial infarction: are they tangible?
por: Choi, Seong Huan, et al.
Publicado: (2022) -
Erratum: Etiologies and Predictors of False-Positive Diagnosis of ST-Segment Elevation Myocardial Infarction
por: Bae, Myung Hwan, et al.
Publicado: (2013) -
Clinical Characteristics and Outcomes of Acute ST-Segment Elevation Myocardial Infarction in Younger Korean Adults
por: Lee, Seung Hun, et al.
Publicado: (2015) -
Biomarker for the Prediction of Major Adverse Cardiac Events in Patients with Non-ST-Segment Elevation Myocardial Infarction
por: Shon, Ho Sun, et al.
Publicado: (2017)