Cargando…
Event-based backpropagation can compute exact gradients for spiking neural networks
Spiking neural networks combine analog computation with event-based communication using discrete spikes. While the impressive advances of deep learning are enabled by training non-spiking artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking networks was...
Autores principales: | Wunderlich, Timo C., Pehle, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213775/ https://www.ncbi.nlm.nih.gov/pubmed/34145314 http://dx.doi.org/10.1038/s41598-021-91786-z |
Ejemplares similares
-
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
por: Zhang, Yisa, et al.
Publicado: (2023) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018)