Cargando…
Detecting structural heterogeneity in single-molecule localization microscopy data
Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. We present a-priori knowledge-free unsupervised classification of structurally different particles employing the...
Autores principales: | Huijben, Teun A.P.M., Heydarian, Hamidreza, Auer, Alexander, Schueder, Florian, Jungmann, Ralf, Stallinga, Sjoerd, Rieger, Bernd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213809/ https://www.ncbi.nlm.nih.gov/pubmed/34145284 http://dx.doi.org/10.1038/s41467-021-24106-8 |
Ejemplares similares
-
Joint registration of multiple point clouds for fast particle fusion in localization microscopy
por: Wang, Wenxiu, et al.
Publicado: (2022) -
3D particle averaging and detection of macromolecular symmetry in localization microscopy
por: Heydarian, Hamidreza, et al.
Publicado: (2021) -
Publisher Correction: 3D particle averaging and detection of macromolecular symmetry in localization microscopy
por: Heydarian, Hamidreza, et al.
Publicado: (2021) -
Detecting continuous structural heterogeneity in single-molecule localization microscopy data
por: Haghparast, Sobhan, et al.
Publicado: (2023) -
Localization microscopy at doubled precision with patterned illumination
por: Cnossen, Jelmer, et al.
Publicado: (2019)