Cargando…
Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients
Accumulating studies appear to suggest that the risk factors for venous thromboembolism (VTE) among young-middle-aged inpatients are different from those among elderly people. Therefore, the current prediction models for VTE are not applicable to young-middle-aged inpatients. The aim of this study w...
Autores principales: | Liu, Hua, Yuan, Hua, Wang, Yongmei, Huang, Weiwei, Xue, Hui, Zhang, Xiuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213829/ https://www.ncbi.nlm.nih.gov/pubmed/34145330 http://dx.doi.org/10.1038/s41598-021-92287-9 |
Ejemplares similares
-
Prevalence of Asymptomatic Venous Thromboembolism in Depressive Inpatients
por: Takeshima, Masahiro, et al.
Publicado: (2020) -
Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study
por: Qin, Li, et al.
Publicado: (2023) -
Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism
por: Mantha, Simon, et al.
Publicado: (2023) -
Incidence of venous thromboembolism in psychiatric inpatients: a chart review
por: Takeshima, Masahiro, et al.
Publicado: (2018) -
Venous thromboembolism (VTE) risk assessment completion in psychiatric inpatients
por: Powell, Harriet, et al.
Publicado: (2021)