Cargando…

Predicting the probability of death using proteomics

Predicting all-cause mortality risk is challenging and requires extensive medical data. Recently, large-scale proteomics datasets have proven useful for predicting health-related outcomes. Here, we use measurements of levels of 4,684 plasma proteins in 22,913 Icelanders to develop all-cause mortalit...

Descripción completa

Detalles Bibliográficos
Autores principales: Eiriksdottir, Thjodbjorg, Ardal, Steinthor, Jonsson, Benedikt A., Lund, Sigrun H., Ivarsdottir, Erna V., Norland, Kristjan, Ferkingstad, Egil, Stefansson, Hreinn, Jonsdottir, Ingileif, Holm, Hilma, Rafnar, Thorunn, Saemundsdottir, Jona, Norddahl, Gudmundur L., Thorgeirsson, Gudmundur, Gudbjartsson, Daniel F., Sulem, Patrick, Thorsteinsdottir, Unnur, Stefansson, Kari, Ulfarsson, Magnus O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213855/
https://www.ncbi.nlm.nih.gov/pubmed/34145379
http://dx.doi.org/10.1038/s42003-021-02289-6
_version_ 1783709944358371328
author Eiriksdottir, Thjodbjorg
Ardal, Steinthor
Jonsson, Benedikt A.
Lund, Sigrun H.
Ivarsdottir, Erna V.
Norland, Kristjan
Ferkingstad, Egil
Stefansson, Hreinn
Jonsdottir, Ingileif
Holm, Hilma
Rafnar, Thorunn
Saemundsdottir, Jona
Norddahl, Gudmundur L.
Thorgeirsson, Gudmundur
Gudbjartsson, Daniel F.
Sulem, Patrick
Thorsteinsdottir, Unnur
Stefansson, Kari
Ulfarsson, Magnus O.
author_facet Eiriksdottir, Thjodbjorg
Ardal, Steinthor
Jonsson, Benedikt A.
Lund, Sigrun H.
Ivarsdottir, Erna V.
Norland, Kristjan
Ferkingstad, Egil
Stefansson, Hreinn
Jonsdottir, Ingileif
Holm, Hilma
Rafnar, Thorunn
Saemundsdottir, Jona
Norddahl, Gudmundur L.
Thorgeirsson, Gudmundur
Gudbjartsson, Daniel F.
Sulem, Patrick
Thorsteinsdottir, Unnur
Stefansson, Kari
Ulfarsson, Magnus O.
author_sort Eiriksdottir, Thjodbjorg
collection PubMed
description Predicting all-cause mortality risk is challenging and requires extensive medical data. Recently, large-scale proteomics datasets have proven useful for predicting health-related outcomes. Here, we use measurements of levels of 4,684 plasma proteins in 22,913 Icelanders to develop all-cause mortality predictors both for short- and long-term risk. The participants were 18-101 years old with a mean follow up of 13.7 (sd. 4.7) years. During the study period, 7,061 participants died. Our proposed predictor outperformed, in survival prediction, a predictor based on conventional mortality risk factors. We could identify the 5% at highest risk in a group of 60-80 years old, where 88% died within ten years and 5% at the lowest risk where only 1% died. Furthermore, the predicted risk of death correlates with measures of frailty in an independent dataset. Our results show that the plasma proteome can be used to assess general health and estimate the risk of death.
format Online
Article
Text
id pubmed-8213855
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82138552021-07-01 Predicting the probability of death using proteomics Eiriksdottir, Thjodbjorg Ardal, Steinthor Jonsson, Benedikt A. Lund, Sigrun H. Ivarsdottir, Erna V. Norland, Kristjan Ferkingstad, Egil Stefansson, Hreinn Jonsdottir, Ingileif Holm, Hilma Rafnar, Thorunn Saemundsdottir, Jona Norddahl, Gudmundur L. Thorgeirsson, Gudmundur Gudbjartsson, Daniel F. Sulem, Patrick Thorsteinsdottir, Unnur Stefansson, Kari Ulfarsson, Magnus O. Commun Biol Article Predicting all-cause mortality risk is challenging and requires extensive medical data. Recently, large-scale proteomics datasets have proven useful for predicting health-related outcomes. Here, we use measurements of levels of 4,684 plasma proteins in 22,913 Icelanders to develop all-cause mortality predictors both for short- and long-term risk. The participants were 18-101 years old with a mean follow up of 13.7 (sd. 4.7) years. During the study period, 7,061 participants died. Our proposed predictor outperformed, in survival prediction, a predictor based on conventional mortality risk factors. We could identify the 5% at highest risk in a group of 60-80 years old, where 88% died within ten years and 5% at the lowest risk where only 1% died. Furthermore, the predicted risk of death correlates with measures of frailty in an independent dataset. Our results show that the plasma proteome can be used to assess general health and estimate the risk of death. Nature Publishing Group UK 2021-06-18 /pmc/articles/PMC8213855/ /pubmed/34145379 http://dx.doi.org/10.1038/s42003-021-02289-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Eiriksdottir, Thjodbjorg
Ardal, Steinthor
Jonsson, Benedikt A.
Lund, Sigrun H.
Ivarsdottir, Erna V.
Norland, Kristjan
Ferkingstad, Egil
Stefansson, Hreinn
Jonsdottir, Ingileif
Holm, Hilma
Rafnar, Thorunn
Saemundsdottir, Jona
Norddahl, Gudmundur L.
Thorgeirsson, Gudmundur
Gudbjartsson, Daniel F.
Sulem, Patrick
Thorsteinsdottir, Unnur
Stefansson, Kari
Ulfarsson, Magnus O.
Predicting the probability of death using proteomics
title Predicting the probability of death using proteomics
title_full Predicting the probability of death using proteomics
title_fullStr Predicting the probability of death using proteomics
title_full_unstemmed Predicting the probability of death using proteomics
title_short Predicting the probability of death using proteomics
title_sort predicting the probability of death using proteomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213855/
https://www.ncbi.nlm.nih.gov/pubmed/34145379
http://dx.doi.org/10.1038/s42003-021-02289-6
work_keys_str_mv AT eiriksdottirthjodbjorg predictingtheprobabilityofdeathusingproteomics
AT ardalsteinthor predictingtheprobabilityofdeathusingproteomics
AT jonssonbenedikta predictingtheprobabilityofdeathusingproteomics
AT lundsigrunh predictingtheprobabilityofdeathusingproteomics
AT ivarsdottirernav predictingtheprobabilityofdeathusingproteomics
AT norlandkristjan predictingtheprobabilityofdeathusingproteomics
AT ferkingstadegil predictingtheprobabilityofdeathusingproteomics
AT stefanssonhreinn predictingtheprobabilityofdeathusingproteomics
AT jonsdottiringileif predictingtheprobabilityofdeathusingproteomics
AT holmhilma predictingtheprobabilityofdeathusingproteomics
AT rafnarthorunn predictingtheprobabilityofdeathusingproteomics
AT saemundsdottirjona predictingtheprobabilityofdeathusingproteomics
AT norddahlgudmundurl predictingtheprobabilityofdeathusingproteomics
AT thorgeirssongudmundur predictingtheprobabilityofdeathusingproteomics
AT gudbjartssondanielf predictingtheprobabilityofdeathusingproteomics
AT sulempatrick predictingtheprobabilityofdeathusingproteomics
AT thorsteinsdottirunnur predictingtheprobabilityofdeathusingproteomics
AT stefanssonkari predictingtheprobabilityofdeathusingproteomics
AT ulfarssonmagnuso predictingtheprobabilityofdeathusingproteomics