Cargando…
The effects of implementing phenomenology in a deep neural network
There have been several recent attempts at using Artificial Intelligence systems to model aspects of consciousness (Gamez, 2008; Reggia, 2013). Deep Neural Networks have been given additional functionality in the present attempt, allowing them to emulate phenological aspects of consciousness by self...
Autores principales: | Bensemann, Joshua, Witbrock, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214092/ https://www.ncbi.nlm.nih.gov/pubmed/34179532 http://dx.doi.org/10.1016/j.heliyon.2021.e07246 |
Ejemplares similares
-
TensorFlow for deep learning-implementing neural networks
por: Buduma, Nikhil
Publicado: (2016) -
Implementation of deep neural networks to count dopamine neurons in substantia nigra
por: Penttinen, Anna‐Maija, et al.
Publicado: (2018) -
Keras deep learning cookbook: over 30 recipes for implementing deep neural networks in Python
por: Dua, Rajdeep, et al.
Publicado: (2018) -
Physiological Phenomenology of Neurally-Mediated Syncope with Management Implications
por: Schroeder, Christoph, et al.
Publicado: (2011) -
Implementation-Independent Representation for Deep Convolutional Neural Networks and Humans in Processing Faces
por: Song, Yiying, et al.
Publicado: (2021)