Cargando…
Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214147/ https://www.ncbi.nlm.nih.gov/pubmed/33823297 http://dx.doi.org/10.1016/j.mcpro.2021.100076 |
_version_ | 1783710001896882176 |
---|---|
author | Verbruggen, Steven Gessulat, Siegfried Gabriels, Ralf Matsaroki, Anna Van de Voorde, Hendrik Kuster, Bernhard Degroeve, Sven Martens, Lennart Van Criekinge, Wim Wilhelm, Mathias Menschaert, Gerben |
author_facet | Verbruggen, Steven Gessulat, Siegfried Gabriels, Ralf Matsaroki, Anna Van de Voorde, Hendrik Kuster, Bernhard Degroeve, Sven Martens, Lennart Van Criekinge, Wim Wilhelm, Mathias Menschaert, Gerben |
author_sort | Verbruggen, Steven |
collection | PubMed |
description | Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence for peptide-to-spectrum matching in a proteogenomics context. To that end, features from the spectral intensity pattern predictors MS(2)PIP and Prosit were combined with the canonical scores from MaxQuant in the Percolator postprocessing tool for protein sequence databases constructed out of ribosome profiling and nanopore RNA-Seq analyses. The presented results provide evidence that this approach enhances both the identification rate as well as the validation stringency in a proteogenomic setting. |
format | Online Article Text |
id | pubmed-8214147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-82141472021-06-28 Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics Verbruggen, Steven Gessulat, Siegfried Gabriels, Ralf Matsaroki, Anna Van de Voorde, Hendrik Kuster, Bernhard Degroeve, Sven Martens, Lennart Van Criekinge, Wim Wilhelm, Mathias Menschaert, Gerben Mol Cell Proteomics Technological Innovation and Resources Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence for peptide-to-spectrum matching in a proteogenomics context. To that end, features from the spectral intensity pattern predictors MS(2)PIP and Prosit were combined with the canonical scores from MaxQuant in the Percolator postprocessing tool for protein sequence databases constructed out of ribosome profiling and nanopore RNA-Seq analyses. The presented results provide evidence that this approach enhances both the identification rate as well as the validation stringency in a proteogenomic setting. American Society for Biochemistry and Molecular Biology 2021-04-03 /pmc/articles/PMC8214147/ /pubmed/33823297 http://dx.doi.org/10.1016/j.mcpro.2021.100076 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Technological Innovation and Resources Verbruggen, Steven Gessulat, Siegfried Gabriels, Ralf Matsaroki, Anna Van de Voorde, Hendrik Kuster, Bernhard Degroeve, Sven Martens, Lennart Van Criekinge, Wim Wilhelm, Mathias Menschaert, Gerben Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title | Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title_full | Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title_fullStr | Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title_full_unstemmed | Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title_short | Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics |
title_sort | spectral prediction features as a solution for the search space size problem in proteogenomics |
topic | Technological Innovation and Resources |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214147/ https://www.ncbi.nlm.nih.gov/pubmed/33823297 http://dx.doi.org/10.1016/j.mcpro.2021.100076 |
work_keys_str_mv | AT verbruggensteven spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT gessulatsiegfried spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT gabrielsralf spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT matsarokianna spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT vandevoordehendrik spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT kusterbernhard spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT degroevesven spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT martenslennart spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT vancriekingewim spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT wilhelmmathias spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics AT menschaertgerben spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics |