Cargando…

Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics

Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence...

Descripción completa

Detalles Bibliográficos
Autores principales: Verbruggen, Steven, Gessulat, Siegfried, Gabriels, Ralf, Matsaroki, Anna, Van de Voorde, Hendrik, Kuster, Bernhard, Degroeve, Sven, Martens, Lennart, Van Criekinge, Wim, Wilhelm, Mathias, Menschaert, Gerben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214147/
https://www.ncbi.nlm.nih.gov/pubmed/33823297
http://dx.doi.org/10.1016/j.mcpro.2021.100076
_version_ 1783710001896882176
author Verbruggen, Steven
Gessulat, Siegfried
Gabriels, Ralf
Matsaroki, Anna
Van de Voorde, Hendrik
Kuster, Bernhard
Degroeve, Sven
Martens, Lennart
Van Criekinge, Wim
Wilhelm, Mathias
Menschaert, Gerben
author_facet Verbruggen, Steven
Gessulat, Siegfried
Gabriels, Ralf
Matsaroki, Anna
Van de Voorde, Hendrik
Kuster, Bernhard
Degroeve, Sven
Martens, Lennart
Van Criekinge, Wim
Wilhelm, Mathias
Menschaert, Gerben
author_sort Verbruggen, Steven
collection PubMed
description Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence for peptide-to-spectrum matching in a proteogenomics context. To that end, features from the spectral intensity pattern predictors MS(2)PIP and Prosit were combined with the canonical scores from MaxQuant in the Percolator postprocessing tool for protein sequence databases constructed out of ribosome profiling and nanopore RNA-Seq analyses. The presented results provide evidence that this approach enhances both the identification rate as well as the validation stringency in a proteogenomic setting.
format Online
Article
Text
id pubmed-8214147
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-82141472021-06-28 Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics Verbruggen, Steven Gessulat, Siegfried Gabriels, Ralf Matsaroki, Anna Van de Voorde, Hendrik Kuster, Bernhard Degroeve, Sven Martens, Lennart Van Criekinge, Wim Wilhelm, Mathias Menschaert, Gerben Mol Cell Proteomics Technological Innovation and Resources Proteogenomics approaches often struggle with the distinction between true and false peptide-to-spectrum matches as the database size enlarges. However, features extracted from tandem mass spectrometry intensity predictors can enhance the peptide identification rate and can provide extra confidence for peptide-to-spectrum matching in a proteogenomics context. To that end, features from the spectral intensity pattern predictors MS(2)PIP and Prosit were combined with the canonical scores from MaxQuant in the Percolator postprocessing tool for protein sequence databases constructed out of ribosome profiling and nanopore RNA-Seq analyses. The presented results provide evidence that this approach enhances both the identification rate as well as the validation stringency in a proteogenomic setting. American Society for Biochemistry and Molecular Biology 2021-04-03 /pmc/articles/PMC8214147/ /pubmed/33823297 http://dx.doi.org/10.1016/j.mcpro.2021.100076 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Technological Innovation and Resources
Verbruggen, Steven
Gessulat, Siegfried
Gabriels, Ralf
Matsaroki, Anna
Van de Voorde, Hendrik
Kuster, Bernhard
Degroeve, Sven
Martens, Lennart
Van Criekinge, Wim
Wilhelm, Mathias
Menschaert, Gerben
Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title_full Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title_fullStr Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title_full_unstemmed Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title_short Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics
title_sort spectral prediction features as a solution for the search space size problem in proteogenomics
topic Technological Innovation and Resources
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214147/
https://www.ncbi.nlm.nih.gov/pubmed/33823297
http://dx.doi.org/10.1016/j.mcpro.2021.100076
work_keys_str_mv AT verbruggensteven spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT gessulatsiegfried spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT gabrielsralf spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT matsarokianna spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT vandevoordehendrik spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT kusterbernhard spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT degroevesven spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT martenslennart spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT vancriekingewim spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT wilhelmmathias spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics
AT menschaertgerben spectralpredictionfeaturesasasolutionforthesearchspacesizeprobleminproteogenomics