Cargando…
Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray
PURPOSE: This study investigated the segmentation metrics of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays to test the generalization ability and robustness which are the basis of clinical decision support algorithms. METHODS: Instance segmentation net...
Autores principales: | Kónya, Sándor, Natarajan, TR Sai, Allouch, Hassan, Nahleh, Kais Abu, Dogheim, Omneya Yakout, Boehm, Heinrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214241/ https://www.ncbi.nlm.nih.gov/pubmed/34194159 http://dx.doi.org/10.4103/jcvjs.jcvjs_186_20 |
Ejemplares similares
-
Pseudogout of the lumbar spine
por: Gupta, Sneha R., et al.
Publicado: (2023) -
Variability of manual lumbar spine segmentation
por: Cook, Daniel J., et al.
Publicado: (2012) -
Evaluation of Spinal Fusion in Thoracic and Thoracolumbar Spine on Standard X-Rays: A New Grading System for Spinal Interbody Fusion
por: Patil, Nirmal D., et al.
Publicado: (2021) -
Reliability Analysis of Vertebral Landmark Labelling on Lumbar Spine X-ray Images
por: Jang, Jun-Su, et al.
Publicado: (2023) -
Results of Four-Level Anterior Cervical Discectomy and Fusion Using Stand-Alone Interbody Titanium Cages
por: Alhashash, Mohamed, et al.
Publicado: (2022)