Cargando…

The mechanisms of colorectal cancer cell mesenchymal-epithelial transition induced by hepatocyte exosome-derived miR-203a-3p

BACKGROUND: Liver metastasis is the most common cause of death in patients with colorectal cancer (CRC). Phosphatase of regenerating liver-3 induces CRC metastasis by epithelial-to-mesenchymal transition, which promotes CRC cell liver metastasis. Mesenchymal-to-epithelial transition (MET), the oppos...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Heyang, Lan, Qiusheng, Huang, Yongliang, Zhang, Yang, Zeng, Yujie, Su, Pengwei, Chu, Ziqiang, Lai, Wei, Chu, Zhonghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214778/
https://www.ncbi.nlm.nih.gov/pubmed/34147083
http://dx.doi.org/10.1186/s12885-021-08419-x
Descripción
Sumario:BACKGROUND: Liver metastasis is the most common cause of death in patients with colorectal cancer (CRC). Phosphatase of regenerating liver-3 induces CRC metastasis by epithelial-to-mesenchymal transition, which promotes CRC cell liver metastasis. Mesenchymal-to-epithelial transition (MET), the opposite of epithelial-to-mesenchymal transition, has been proposed as a mechanism for the establishment of metastatic neoplasms. However, the molecular mechanism of MET remains unclear. METHODS: Using Immunohistochemistry, western blotting, invasion assays, real-time quantitative PCR, chromatin immunoprecipitation, luciferase reporter assays, human miRNA arrays, and xenograft mouse model, we determined the role of hepatocyte exosome-derived miR-203a-3p in CRC MET. RESULTS: In our study, we found that miR-203a-3p derived from hepatocyte exosomes increased colorectal cancer cells E-cadherin expression, inhibited Src expression, and reduced activity. In this way miR-203a-3p induced the decreased invasion rate of CRC cells. COCLUSION: MiR-203a-3p derived from hepatocyte exosomes plays an important role of CRC cells to colonize in liver.