Cargando…
Training and Validation of Deep Learning-Based Auto-Segmentation Models for Lung Stereotactic Ablative Radiotherapy Using Retrospective Radiotherapy Planning Contours
PURPOSE: Deep learning-based auto-segmented contour (DC) models require high quality data for their development, and previous studies have typically used prospectively produced contours, which can be resource intensive and time consuming to obtain. The aim of this study was to investigate the feasib...
Autores principales: | Wong, Jordan, Huang, Vicky, Giambattista, Joshua A., Teke, Tony, Kolbeck, Carter, Giambattista, Jonathan, Atrchian, Siavash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215371/ https://www.ncbi.nlm.nih.gov/pubmed/34164335 http://dx.doi.org/10.3389/fonc.2021.626499 |
Ejemplares similares
-
Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers
por: Wong, Jordan, et al.
Publicado: (2021) -
Restricted bowel loop contouring: Improving efficiency in radiotherapy contouring for abdomino-pelvic Stereotactic Ablative Radiotherapy (SABR)
por: Clarke, Eleanor, et al.
Publicado: (2020) -
The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy
por: Li, Yi, et al.
Publicado: (2022) -
Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning
por: Palazzo, Gabriele, et al.
Publicado: (2023) -
Plan quality analysis of stereotactic ablative body radiotherapy treatment planning in liver tumor
por: Watcharawipha, Anirut, et al.
Publicado: (2023)