Cargando…

Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding

[Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing...

Descripción completa

Detalles Bibliográficos
Autores principales: Malär, Alexander A., Völker, Laura A., Cadalbert, Riccardo, Lecoq, Lauriane, Ernst, Matthias, Böckmann, Anja, Meier, Beat H., Wiegand, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215646/
https://www.ncbi.nlm.nih.gov/pubmed/34097409
http://dx.doi.org/10.1021/acs.jpcb.1c04061
_version_ 1783710281601384448
author Malär, Alexander A.
Völker, Laura A.
Cadalbert, Riccardo
Lecoq, Lauriane
Ernst, Matthias
Böckmann, Anja
Meier, Beat H.
Wiegand, Thomas
author_facet Malär, Alexander A.
Völker, Laura A.
Cadalbert, Riccardo
Lecoq, Lauriane
Ernst, Matthias
Böckmann, Anja
Meier, Beat H.
Wiegand, Thomas
author_sort Malär, Alexander A.
collection PubMed
description [Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations.
format Online
Article
Text
id pubmed-8215646
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-82156462021-06-22 Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding Malär, Alexander A. Völker, Laura A. Cadalbert, Riccardo Lecoq, Lauriane Ernst, Matthias Böckmann, Anja Meier, Beat H. Wiegand, Thomas J Phys Chem B [Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations. American Chemical Society 2021-06-07 2021-06-17 /pmc/articles/PMC8215646/ /pubmed/34097409 http://dx.doi.org/10.1021/acs.jpcb.1c04061 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Malär, Alexander A.
Völker, Laura A.
Cadalbert, Riccardo
Lecoq, Lauriane
Ernst, Matthias
Böckmann, Anja
Meier, Beat H.
Wiegand, Thomas
Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title_full Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title_fullStr Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title_full_unstemmed Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title_short Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
title_sort temperature-dependent solid-state nmr proton chemical-shift values and hydrogen bonding
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215646/
https://www.ncbi.nlm.nih.gov/pubmed/34097409
http://dx.doi.org/10.1021/acs.jpcb.1c04061
work_keys_str_mv AT malaralexandera temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT volkerlauraa temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT cadalbertriccardo temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT lecoqlauriane temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT ernstmatthias temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT bockmannanja temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT meierbeath temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding
AT wiegandthomas temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding