Cargando…
Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding
[Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215646/ https://www.ncbi.nlm.nih.gov/pubmed/34097409 http://dx.doi.org/10.1021/acs.jpcb.1c04061 |
_version_ | 1783710281601384448 |
---|---|
author | Malär, Alexander A. Völker, Laura A. Cadalbert, Riccardo Lecoq, Lauriane Ernst, Matthias Böckmann, Anja Meier, Beat H. Wiegand, Thomas |
author_facet | Malär, Alexander A. Völker, Laura A. Cadalbert, Riccardo Lecoq, Lauriane Ernst, Matthias Böckmann, Anja Meier, Beat H. Wiegand, Thomas |
author_sort | Malär, Alexander A. |
collection | PubMed |
description | [Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations. |
format | Online Article Text |
id | pubmed-8215646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-82156462021-06-22 Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding Malär, Alexander A. Völker, Laura A. Cadalbert, Riccardo Lecoq, Lauriane Ernst, Matthias Böckmann, Anja Meier, Beat H. Wiegand, Thomas J Phys Chem B [Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations. American Chemical Society 2021-06-07 2021-06-17 /pmc/articles/PMC8215646/ /pubmed/34097409 http://dx.doi.org/10.1021/acs.jpcb.1c04061 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Malär, Alexander A. Völker, Laura A. Cadalbert, Riccardo Lecoq, Lauriane Ernst, Matthias Böckmann, Anja Meier, Beat H. Wiegand, Thomas Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding |
title | Temperature-Dependent Solid-State NMR Proton Chemical-Shift
Values and Hydrogen Bonding |
title_full | Temperature-Dependent Solid-State NMR Proton Chemical-Shift
Values and Hydrogen Bonding |
title_fullStr | Temperature-Dependent Solid-State NMR Proton Chemical-Shift
Values and Hydrogen Bonding |
title_full_unstemmed | Temperature-Dependent Solid-State NMR Proton Chemical-Shift
Values and Hydrogen Bonding |
title_short | Temperature-Dependent Solid-State NMR Proton Chemical-Shift
Values and Hydrogen Bonding |
title_sort | temperature-dependent solid-state nmr proton chemical-shift
values and hydrogen bonding |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215646/ https://www.ncbi.nlm.nih.gov/pubmed/34097409 http://dx.doi.org/10.1021/acs.jpcb.1c04061 |
work_keys_str_mv | AT malaralexandera temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT volkerlauraa temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT cadalbertriccardo temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT lecoqlauriane temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT ernstmatthias temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT bockmannanja temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT meierbeath temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding AT wiegandthomas temperaturedependentsolidstatenmrprotonchemicalshiftvaluesandhydrogenbonding |