Cargando…
A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer
Background: Ferroptosis, a regulated cell death which is driven by the iron-dependent peroxidation of lipids, plays an important role in cancer. However, studies about ferroptosis-related Long non-coding RNAs (lncRNAs) in breast cancer (BC) are limited. Besides, the prognostic role of ferroptosis-re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215711/ https://www.ncbi.nlm.nih.gov/pubmed/34164433 http://dx.doi.org/10.3389/fmolb.2021.678877 |
_version_ | 1783710294452731904 |
---|---|
author | Zhang, Kaiming Ping, Liqin Du, Tian Liang, Gehao Huang, Yun Li, Zhiling Deng, Rong Tang, Jun |
author_facet | Zhang, Kaiming Ping, Liqin Du, Tian Liang, Gehao Huang, Yun Li, Zhiling Deng, Rong Tang, Jun |
author_sort | Zhang, Kaiming |
collection | PubMed |
description | Background: Ferroptosis, a regulated cell death which is driven by the iron-dependent peroxidation of lipids, plays an important role in cancer. However, studies about ferroptosis-related Long non-coding RNAs (lncRNAs) in breast cancer (BC) are limited. Besides, the prognostic role of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer remain unclear. This study aimed to explore the potential prognostic value of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer. Methods: RNA-sequencing data of female breast cancer patients were downloaded from TCGA database. 937 patients were randomly separated into training or validation cohort in 2:1 ratio. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 239 reported ferroptosis-related genes. A ferroptosis-related lncRNAs signature was constructed with univariate and multivariate Cox regression analyses in the training cohort, and its prognostic value was further tested in the validation cohort. Results: An 8-ferroptosis-related-lncRNAs signature was developed by multivariate Cox regression analysis to divide patients into two risk groups. Patients in the high-risk group had worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed the risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The area under time-dependent ROC curve (AUC) reached 0.853 at 1 year, 0.802 at 2 years, 0.740 at 5 years in the training cohort and 0.791 at 1 year, 0.778 at 2 years, 0.722 at 5 years in the validation cohort. Further analysis demonstrated that immune-related pathways were significantly enriched in the high-risk group. Analysis of the immune cell infiltration landscape showed that breast cancer in the high-risk group tended be immunologically “cold”. Conclusion: We identified a novel ferroptosis-related lncRNA signature which could precisely predict the prognosis of breast cancer patients. Ferroptosis-related lncRNAs may have a potential role in the process of anti-tumor immunity and serve as therapeutic targets for breast cancer. |
format | Online Article Text |
id | pubmed-8215711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82157112021-06-22 A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer Zhang, Kaiming Ping, Liqin Du, Tian Liang, Gehao Huang, Yun Li, Zhiling Deng, Rong Tang, Jun Front Mol Biosci Molecular Biosciences Background: Ferroptosis, a regulated cell death which is driven by the iron-dependent peroxidation of lipids, plays an important role in cancer. However, studies about ferroptosis-related Long non-coding RNAs (lncRNAs) in breast cancer (BC) are limited. Besides, the prognostic role of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer remain unclear. This study aimed to explore the potential prognostic value of ferroptosis-related lncRNAs and their relationship to immune microenvironment in breast cancer. Methods: RNA-sequencing data of female breast cancer patients were downloaded from TCGA database. 937 patients were randomly separated into training or validation cohort in 2:1 ratio. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 239 reported ferroptosis-related genes. A ferroptosis-related lncRNAs signature was constructed with univariate and multivariate Cox regression analyses in the training cohort, and its prognostic value was further tested in the validation cohort. Results: An 8-ferroptosis-related-lncRNAs signature was developed by multivariate Cox regression analysis to divide patients into two risk groups. Patients in the high-risk group had worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed the risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The area under time-dependent ROC curve (AUC) reached 0.853 at 1 year, 0.802 at 2 years, 0.740 at 5 years in the training cohort and 0.791 at 1 year, 0.778 at 2 years, 0.722 at 5 years in the validation cohort. Further analysis demonstrated that immune-related pathways were significantly enriched in the high-risk group. Analysis of the immune cell infiltration landscape showed that breast cancer in the high-risk group tended be immunologically “cold”. Conclusion: We identified a novel ferroptosis-related lncRNA signature which could precisely predict the prognosis of breast cancer patients. Ferroptosis-related lncRNAs may have a potential role in the process of anti-tumor immunity and serve as therapeutic targets for breast cancer. Frontiers Media S.A. 2021-06-07 /pmc/articles/PMC8215711/ /pubmed/34164433 http://dx.doi.org/10.3389/fmolb.2021.678877 Text en Copyright © 2021 Zhang, Ping, Du, Liang, Huang, Li, Deng and Tang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Zhang, Kaiming Ping, Liqin Du, Tian Liang, Gehao Huang, Yun Li, Zhiling Deng, Rong Tang, Jun A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title | A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title_full | A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title_fullStr | A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title_full_unstemmed | A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title_short | A Ferroptosis-Related lncRNAs Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer |
title_sort | ferroptosis-related lncrnas signature predicts prognosis and immune microenvironment for breast cancer |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215711/ https://www.ncbi.nlm.nih.gov/pubmed/34164433 http://dx.doi.org/10.3389/fmolb.2021.678877 |
work_keys_str_mv | AT zhangkaiming aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT pingliqin aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT dutian aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT lianggehao aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT huangyun aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT lizhiling aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT dengrong aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT tangjun aferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT zhangkaiming ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT pingliqin ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT dutian ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT lianggehao ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT huangyun ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT lizhiling ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT dengrong ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer AT tangjun ferroptosisrelatedlncrnassignaturepredictsprognosisandimmunemicroenvironmentforbreastcancer |