Cargando…

Increased apoptosis, tumor necrosis factor-α, and DNA damage attenuated by 3',4'-dihydroxyflavonol in rats with brain İschemia-reperfusion

OBJECTIVES: This research was aimed to find out the effects of 3',4'-dihydroxyflavonol (DiOHF) on apoptosis, DNA damage, and tumor necrosis factor-α (TNF-α) levels in the frontal cortex of rats with induced experimental brain ischemi reperfusion. MATERIALS AND METHODS: A total of 38 Wistar...

Descripción completa

Detalles Bibliográficos
Autores principales: Dasdelen, Dervis, Solmaz, Merve, Menevse, Esma, Mogulkoc, Rasim, Baltaci, Abdulkerim Kasim, Erdogan, Ender
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216126/
https://www.ncbi.nlm.nih.gov/pubmed/33975998
http://dx.doi.org/10.4103/ijp.IJP_727_20
Descripción
Sumario:OBJECTIVES: This research was aimed to find out the effects of 3',4'-dihydroxyflavonol (DiOHF) on apoptosis, DNA damage, and tumor necrosis factor-α (TNF-α) levels in the frontal cortex of rats with induced experimental brain ischemi reperfusion. MATERIALS AND METHODS: A total of 38 Wistar albino male rats were used. Groups were created as 1-Sham; 2-Ischemia-reperfusion (I/R); 3-I/R + DiOHF (10 mg/kg); 4-Ischemia + DiOHF + reperfusion; 5-DiOHF + I/R. I/R was performed by carotid artery ligation for 30 min in anesthesized animals. Following experimental applications, blood samples were taken from anesthetized rats to obtain erythrocyte and plasma. Later, the rats were killed by cervical dislocation, and frontal cortex samples were taken and stored at − 80° C for the analysis. RESULTS: In the ischemic frontal cortex tissue sections degenerate neuron numbers, Terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) positive cell ratio and caspase-3 positive cell ratio increased. Malondialdehyde, TNF-α, and 8-OHdG levels were increased in both plasma and tissue in ischemia group, whereas tissue and erythrocyte glutathione levels were significantly suppressed. However, these values were significantly reversed by DiOHF treatment. CONCLUSION: The results of the study showed that I/R significantly increased apoptosis, TNF-α, and DNA damage in rats with brain I/R. However, 10 mg/kg intraperitoneal DiOHF treatment improved deterioted parameters.