Cargando…
Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI
BACKGROUND: Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites...
Autores principales: | Kashiwagi, Nobuo, Tanaka, Hisashi, Yamashita, Yuichi, Takahashi, Hiroto, Kassai, Yoshimori, Fujiwara, Masahiro, Tomiyama, Noriyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216362/ https://www.ncbi.nlm.nih.gov/pubmed/34211738 http://dx.doi.org/10.1177/20584601211023939 |
Ejemplares similares
-
MRI imaging features of HIV-related central nervous system diseases: diagnosis by pattern recognition in daily practice
por: Sakai, Mio, et al.
Publicado: (2021) -
Heritability of brain volume on MRI in middle to advanced age: A twin study of Japanese adults
por: Lukies, Matthew W., et al.
Publicado: (2017) -
Effect of urinary glucose concentration and pH on signal intensity in magnetic resonance images
por: Yoshimura, Sho, et al.
Publicado: (2022) -
Quantitative susceptibility mapping (QSM) evaluation of infantile neuroaxonal dystrophy
por: Fujiwara, Takuya, et al.
Publicado: (2019) -
Improved visualization of the chorda tympani nerve using
ultra‐high-resolution computed tomography
por: Fujiwara, Masahiro, et al.
Publicado: (2021)