Cargando…

Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy

Dihydroartemisinin (DHA) is a potent anti-cancer drug that has limited clinical applications due to poor water solubility and low bioavailability. We designed a biodegradable poly(ethylene glycol) methyl ether-poly(ε-caprolactone) (MPEG-PCL) micelle carrier for DHA using the self-assembly method. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yun, Wen, Qian, Luo, Jia, Xiong, Kang, Wu, ZhouXue, Wang, BiQiong, Chen, Yue, Yang, Bo, Fu, ShaoZhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216472/
https://www.ncbi.nlm.nih.gov/pubmed/32516033
http://dx.doi.org/10.1080/10717544.2020.1775725
Descripción
Sumario:Dihydroartemisinin (DHA) is a potent anti-cancer drug that has limited clinical applications due to poor water solubility and low bioavailability. We designed a biodegradable poly(ethylene glycol) methyl ether-poly(ε-caprolactone) (MPEG-PCL) micelle carrier for DHA using the self-assembly method. The DHA/MPEG-PCL nanoparticles were spherical with an average particle size of 30.28 ± 0.27 nm, and released the drug in a sustained manner in aqueous solution. The drug-loaded nanoparticles showed dose-dependent toxicity in HeLa cells by inducing cycle arrest and apoptosis. Furthermore, compared to free DHA, the DHA/MPEG-PCL nanoparticles showed higher therapeutic efficacy and lower toxicity in vivo, and significantly inhibited tumor growth and prolonged the survival of tumor-bearing nude mice. In addition, the tumor tissues of the DHA/MPEG-PCL-treated mice showed a marked decline in the in situ expression of proliferation and angiogenesis markers. Taken together, the self-assembled DHA/MPEG-PCL nanoparticles are a highly promising delivery system for targeted cancer treatment.