Cargando…
Eigenvalue-based entropy in directed complex networks
Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216510/ https://www.ncbi.nlm.nih.gov/pubmed/34153043 http://dx.doi.org/10.1371/journal.pone.0251993 |
_version_ | 1783710432787169280 |
---|---|
author | Sun, Yan Zhao, Haixing Liang, Jing Ma, Xiujuan |
author_facet | Sun, Yan Zhao, Haixing Liang, Jing Ma, Xiujuan |
author_sort | Sun, Yan |
collection | PubMed |
description | Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network. |
format | Online Article Text |
id | pubmed-8216510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82165102021-07-01 Eigenvalue-based entropy in directed complex networks Sun, Yan Zhao, Haixing Liang, Jing Ma, Xiujuan PLoS One Research Article Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network. Public Library of Science 2021-06-21 /pmc/articles/PMC8216510/ /pubmed/34153043 http://dx.doi.org/10.1371/journal.pone.0251993 Text en © 2021 Sun et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sun, Yan Zhao, Haixing Liang, Jing Ma, Xiujuan Eigenvalue-based entropy in directed complex networks |
title | Eigenvalue-based entropy in directed complex networks |
title_full | Eigenvalue-based entropy in directed complex networks |
title_fullStr | Eigenvalue-based entropy in directed complex networks |
title_full_unstemmed | Eigenvalue-based entropy in directed complex networks |
title_short | Eigenvalue-based entropy in directed complex networks |
title_sort | eigenvalue-based entropy in directed complex networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216510/ https://www.ncbi.nlm.nih.gov/pubmed/34153043 http://dx.doi.org/10.1371/journal.pone.0251993 |
work_keys_str_mv | AT sunyan eigenvaluebasedentropyindirectedcomplexnetworks AT zhaohaixing eigenvaluebasedentropyindirectedcomplexnetworks AT liangjing eigenvaluebasedentropyindirectedcomplexnetworks AT maxiujuan eigenvaluebasedentropyindirectedcomplexnetworks |