Cargando…
Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting
Complex time series data exists widely in actual systems, and its forecasting has great practical significance. Simultaneously, the classical linear model cannot obtain satisfactory performance due to nonlinearity and multicomponent characteristics. Based on the data-driven mechanism, this paper pro...
Autores principales: | Jin, Xue-Bo, Zhang, Jia-Hui, Su, Ting-Li, Bai, Yu-Ting, Kong, Jian-Lei, Wang, Xiao-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216800/ https://www.ncbi.nlm.nih.gov/pubmed/34234823 http://dx.doi.org/10.1155/2021/8810046 |
Ejemplares similares
-
Data-driven outbreak forecasting with a simple nonlinear growth model
por: Lega, Joceline, et al.
Publicado: (2016) -
Wavelets in neuroscience
por: Hramov, Alexander E, et al.
Publicado: (2015) -
A Variational Bayesian Deep Network with Data Self-Screening Layer for Massive Time-Series Data Forecasting
por: Jin, Xue-Bo, et al.
Publicado: (2022) -
Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows
por: Eriksson, Olivia, et al.
Publicado: (2022) -
Data-driven modeling of nonlinear materials in normal-conducting magnets
por: Sorti, Stefano, et al.
Publicado: (2022)