Cargando…
Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI
Brain tumor is a deadly neurological disease caused by an abnormal and uncontrollable growth of cells inside the brain or skull. The mortality ratio of patients suffering from this disease is growing gradually. Analysing Magnetic Resonance Images (MRIs) manually is inadequate for efficient and accur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216815/ https://www.ncbi.nlm.nih.gov/pubmed/34234822 http://dx.doi.org/10.1155/2021/5513500 |
_version_ | 1783710494989746176 |
---|---|
author | Naseer, Asma Yasir, Tahreem Azhar, Arifah Shakeel, Tanzeela Zafar, Kashif |
author_facet | Naseer, Asma Yasir, Tahreem Azhar, Arifah Shakeel, Tanzeela Zafar, Kashif |
author_sort | Naseer, Asma |
collection | PubMed |
description | Brain tumor is a deadly neurological disease caused by an abnormal and uncontrollable growth of cells inside the brain or skull. The mortality ratio of patients suffering from this disease is growing gradually. Analysing Magnetic Resonance Images (MRIs) manually is inadequate for efficient and accurate brain tumor diagnosis. An early diagnosis of the disease can activate a timely treatment consequently elevating the survival ratio of the patients. Modern brain imaging methodologies have augmented the detection ratio of brain tumor. In the past few years, a lot of research has been carried out for computer-aided diagnosis of human brain tumor to achieve 100% diagnosis accuracy. The focus of this research is on early diagnosis of brain tumor via Convolution Neural Network (CNN) to enhance state-of-the-art diagnosis accuracy. The proposed CNN is trained on a benchmark dataset, BR35H, containing brain tumor MRIs. The performance and sustainability of the model is evaluated on six different datasets, i.e., BMI-I, BTI, BMI-II, BTS, BMI-III, and BD-BT. To improve the performance of the model and to make it sustainable for totally unseen data, different geometric data augmentation techniques, along with statistical standardization, are employed. The proposed CNN-based CAD system for brain tumor diagnosis performs better than other systems by achieving an average accuracy of around 98.8% and a specificity of around 0.99. It also reveals 100% correct diagnosis for two brain MRI datasets, i.e., BTS and BD-BT. The performance of the proposed system is also compared with the other existing systems, and the analysis reveals that the proposed system outperforms all of them. |
format | Online Article Text |
id | pubmed-8216815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82168152021-07-06 Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI Naseer, Asma Yasir, Tahreem Azhar, Arifah Shakeel, Tanzeela Zafar, Kashif Int J Biomed Imaging Research Article Brain tumor is a deadly neurological disease caused by an abnormal and uncontrollable growth of cells inside the brain or skull. The mortality ratio of patients suffering from this disease is growing gradually. Analysing Magnetic Resonance Images (MRIs) manually is inadequate for efficient and accurate brain tumor diagnosis. An early diagnosis of the disease can activate a timely treatment consequently elevating the survival ratio of the patients. Modern brain imaging methodologies have augmented the detection ratio of brain tumor. In the past few years, a lot of research has been carried out for computer-aided diagnosis of human brain tumor to achieve 100% diagnosis accuracy. The focus of this research is on early diagnosis of brain tumor via Convolution Neural Network (CNN) to enhance state-of-the-art diagnosis accuracy. The proposed CNN is trained on a benchmark dataset, BR35H, containing brain tumor MRIs. The performance and sustainability of the model is evaluated on six different datasets, i.e., BMI-I, BTI, BMI-II, BTS, BMI-III, and BD-BT. To improve the performance of the model and to make it sustainable for totally unseen data, different geometric data augmentation techniques, along with statistical standardization, are employed. The proposed CNN-based CAD system for brain tumor diagnosis performs better than other systems by achieving an average accuracy of around 98.8% and a specificity of around 0.99. It also reveals 100% correct diagnosis for two brain MRI datasets, i.e., BTS and BD-BT. The performance of the proposed system is also compared with the other existing systems, and the analysis reveals that the proposed system outperforms all of them. Hindawi 2021-06-13 /pmc/articles/PMC8216815/ /pubmed/34234822 http://dx.doi.org/10.1155/2021/5513500 Text en Copyright © 2021 Asma Naseer et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Naseer, Asma Yasir, Tahreem Azhar, Arifah Shakeel, Tanzeela Zafar, Kashif Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title | Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title_full | Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title_fullStr | Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title_full_unstemmed | Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title_short | Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI |
title_sort | computer-aided brain tumor diagnosis: performance evaluation of deep learner cnn using augmented brain mri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216815/ https://www.ncbi.nlm.nih.gov/pubmed/34234822 http://dx.doi.org/10.1155/2021/5513500 |
work_keys_str_mv | AT naseerasma computeraidedbraintumordiagnosisperformanceevaluationofdeeplearnercnnusingaugmentedbrainmri AT yasirtahreem computeraidedbraintumordiagnosisperformanceevaluationofdeeplearnercnnusingaugmentedbrainmri AT azhararifah computeraidedbraintumordiagnosisperformanceevaluationofdeeplearnercnnusingaugmentedbrainmri AT shakeeltanzeela computeraidedbraintumordiagnosisperformanceevaluationofdeeplearnercnnusingaugmentedbrainmri AT zafarkashif computeraidedbraintumordiagnosisperformanceevaluationofdeeplearnercnnusingaugmentedbrainmri |