Cargando…
A novel data augmentation approach for mask detection using deep transfer learning
At the onset of 2020, the world saw the rise and spread of a global pandemic named COVID-19 which caused numerous deaths and affected millions of people around the world. Due to its highly contagious nature, this disease spread across the world within a short span of time. It forced almost all the n...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216842/ https://www.ncbi.nlm.nih.gov/pubmed/34179856 http://dx.doi.org/10.1016/j.ibmed.2021.100037 |
Sumario: | At the onset of 2020, the world saw the rise and spread of a global pandemic named COVID-19 which caused numerous deaths and affected millions of people around the world. Due to its highly contagious nature, this disease spread across the world within a short span of time. It forced almost all the nations to implement strict social distancing rules along with use of face masks to reduce the risk of getting infected. While the virus is still on loose, markets and business firms have reopened to keep the economy alive. This calls for modification of existing technological models to cater for the safety of individuals and stop the spread of virus in public places. One such stringent implementation to achieve this safety would be deployment of a mask detection model. The proposed mask detection models can serve as a vital utility in the coming years for ensuring proper enforcement of safety protocols. This research paper explores the use of state of the art YOLOv3 model, a deep transfer learning object detection technique, to develop a mask detection model. Along with the implementation of a standard approach of any object detection algorithm, this paper has proposed the use of a data augmentation approach for mask detection. The proposed model focuses on generating an augmented dataset from the standard dataset with the help of data augmentation done by using image filtering techniques such as grayscale and Gaussian blur. This augmented dataset is used for training the object detection model for mask detection. The mean average precision for the Data augmentation based mask detection model is observed to be 99.8% while training. Finally, a comparison on the model performance is evaluated for the standard and proposed augmented data approach. The experiment conducted showed that the average confidence level for Standard mask detection model was 0.94, 0.93, 0.91 for images of individuals (type A), images with groups of people (type B) and video with the group of people (type C) respectively. The average confidence levels for the Data augmentation based mask detection model for types A, B and C are 0.97, 0.96 0.93 respectively. This paper therefore concludes that the proposed Data augmentation based mask detection model performs better than the Standard mask detection model. |
---|