Cargando…
COVID-19 deep classification network based on convolution and deconvolution local enhancement
Computer Tomography (CT) detection can effectively overcome the problems of traditional detection of Corona Virus Disease 2019 (COVID-19), such as lagging detection results and wrong diagnosis results, which lead to the increase of disease infection rate and prevalence rate. The novel coronavirus pn...
Autores principales: | Fang, Lingling, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216864/ https://www.ncbi.nlm.nih.gov/pubmed/34182330 http://dx.doi.org/10.1016/j.compbiomed.2021.104588 |
Ejemplares similares
-
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Deep convolutional neural network–based image classification for COVID-19 diagnosis
por: Tharsanee, R.M., et al.
Publicado: (2021) -
Deep Convolutional Generative Adversarial Network-Based EMG Data Enhancement for Hand Motion Classification
por: Chen, Zihan, et al.
Publicado: (2022) -
COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network
por: Shalaby, Wafaa A., et al.
Publicado: (2021)