Cargando…
An automatic method for removing empty camera trap images using ensemble learning
Camera traps often produce massive images, and empty images that do not contain animals are usually overwhelming. Deep learning is a machine‐learning algorithm and widely used to identify empty camera trap images automatically. Existing methods with high accuracy are based on millions of training sa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216933/ https://www.ncbi.nlm.nih.gov/pubmed/34188837 http://dx.doi.org/10.1002/ece3.7591 |
_version_ | 1783710521802883072 |
---|---|
author | Yang, Deng‐Qi Tan, Kun Huang, Zhi‐Pang Li, Xiao‐Wei Chen, Ben‐Hui Ren, Guo‐Peng Xiao, Wen |
author_facet | Yang, Deng‐Qi Tan, Kun Huang, Zhi‐Pang Li, Xiao‐Wei Chen, Ben‐Hui Ren, Guo‐Peng Xiao, Wen |
author_sort | Yang, Deng‐Qi |
collection | PubMed |
description | Camera traps often produce massive images, and empty images that do not contain animals are usually overwhelming. Deep learning is a machine‐learning algorithm and widely used to identify empty camera trap images automatically. Existing methods with high accuracy are based on millions of training samples (images) and require a lot of time and personnel costs to label the training samples manually. Reducing the number of training samples can save the cost of manually labeling images. However, the deep learning models based on a small dataset produce a large omission error of animal images that many animal images tend to be identified as empty images, which may lead to loss of the opportunities of discovering and observing species. Therefore, it is still a challenge to build the DCNN model with small errors on a small dataset. Using deep convolutional neural networks and a small‐size dataset, we proposed an ensemble learning approach based on conservative strategies to identify and remove empty images automatically. Furthermore, we proposed three automatic identifying schemes of empty images for users who accept different omission errors of animal images. Our experimental results showed that these three schemes automatically identified and removed 50.78%, 58.48%, and 77.51% of the empty images in the dataset when the omission errors were 0.70%, 1.13%, and 2.54%, respectively. The analysis showed that using our scheme to automatically identify empty images did not omit species information. It only slightly changed the frequency of species occurrence. When only a small dataset was available, our approach provided an alternative to users to automatically identify and remove empty images, which can significantly reduce the time and personnel costs required to manually remove empty images. The cost savings were comparable to the percentage of empty images removed by models. |
format | Online Article Text |
id | pubmed-8216933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82169332021-06-28 An automatic method for removing empty camera trap images using ensemble learning Yang, Deng‐Qi Tan, Kun Huang, Zhi‐Pang Li, Xiao‐Wei Chen, Ben‐Hui Ren, Guo‐Peng Xiao, Wen Ecol Evol Original Research Camera traps often produce massive images, and empty images that do not contain animals are usually overwhelming. Deep learning is a machine‐learning algorithm and widely used to identify empty camera trap images automatically. Existing methods with high accuracy are based on millions of training samples (images) and require a lot of time and personnel costs to label the training samples manually. Reducing the number of training samples can save the cost of manually labeling images. However, the deep learning models based on a small dataset produce a large omission error of animal images that many animal images tend to be identified as empty images, which may lead to loss of the opportunities of discovering and observing species. Therefore, it is still a challenge to build the DCNN model with small errors on a small dataset. Using deep convolutional neural networks and a small‐size dataset, we proposed an ensemble learning approach based on conservative strategies to identify and remove empty images automatically. Furthermore, we proposed three automatic identifying schemes of empty images for users who accept different omission errors of animal images. Our experimental results showed that these three schemes automatically identified and removed 50.78%, 58.48%, and 77.51% of the empty images in the dataset when the omission errors were 0.70%, 1.13%, and 2.54%, respectively. The analysis showed that using our scheme to automatically identify empty images did not omit species information. It only slightly changed the frequency of species occurrence. When only a small dataset was available, our approach provided an alternative to users to automatically identify and remove empty images, which can significantly reduce the time and personnel costs required to manually remove empty images. The cost savings were comparable to the percentage of empty images removed by models. John Wiley and Sons Inc. 2021-05-02 /pmc/articles/PMC8216933/ /pubmed/34188837 http://dx.doi.org/10.1002/ece3.7591 Text en © 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Yang, Deng‐Qi Tan, Kun Huang, Zhi‐Pang Li, Xiao‐Wei Chen, Ben‐Hui Ren, Guo‐Peng Xiao, Wen An automatic method for removing empty camera trap images using ensemble learning |
title | An automatic method for removing empty camera trap images using ensemble learning |
title_full | An automatic method for removing empty camera trap images using ensemble learning |
title_fullStr | An automatic method for removing empty camera trap images using ensemble learning |
title_full_unstemmed | An automatic method for removing empty camera trap images using ensemble learning |
title_short | An automatic method for removing empty camera trap images using ensemble learning |
title_sort | automatic method for removing empty camera trap images using ensemble learning |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216933/ https://www.ncbi.nlm.nih.gov/pubmed/34188837 http://dx.doi.org/10.1002/ece3.7591 |
work_keys_str_mv | AT yangdengqi anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT tankun anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT huangzhipang anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT lixiaowei anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT chenbenhui anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT renguopeng anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT xiaowen anautomaticmethodforremovingemptycameratrapimagesusingensemblelearning AT yangdengqi automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT tankun automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT huangzhipang automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT lixiaowei automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT chenbenhui automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT renguopeng automaticmethodforremovingemptycameratrapimagesusingensemblelearning AT xiaowen automaticmethodforremovingemptycameratrapimagesusingensemblelearning |