Cargando…

Gut microbiota are associated with sex and age of host: Evidence from semi‐provisioned rhesus macaques in southwest Guangxi, China

Host characteristics, such as sex and age, are closely associated with the structure and function of gut microbiota; however, less is known about the effects of age and sex on the gut microbiota of nonhuman primates, and therefore, our knowledge of interindividual variability in host gut microbiota...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuhui, Chen, Ting, Li, Youbang, Tang, Yin, Huang, Zhonghao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216961/
https://www.ncbi.nlm.nih.gov/pubmed/34188874
http://dx.doi.org/10.1002/ece3.7643
Descripción
Sumario:Host characteristics, such as sex and age, are closely associated with the structure and function of gut microbiota; however, less is known about the effects of age and sex on the gut microbiota of nonhuman primates, and therefore, our knowledge of interindividual variability in host gut microbiota is limited. In this study, 153 fecal samples from rhesus macaques (Macaca mulatta) were analyzed using high‐throughput 16S rRNA sequencing in order to explore associations between age and sex of the host and their gut microbiota. The results indicated that female macaques had higher alpha diversity and a more unique gut microbiota than did males. The proportion of Proteobacteria, Tenericutes, Cyanobacteria, unclassified bacteria, and Verrucomicrobia was higher in females than that in males. We also found that adults of both sexes had a higher alpha diversity, a higher proportion of norank Ruminococcaceae, Oscillospira, norank Lachnospiraceae, norank Clostridiales, and Succinivibrio, and a lower proportion of Enterococcus than immatures. Functional analyses revealed that the richness of metabolic pathways was higher in females than males and in adults compared with immatures. These results could be attributed to differences in the nutritional requirements and hormone levels of macaques of different sex and age classes. We conclude that variation in the gut microbiota of different sex and age classes of rhesus macaques may be linked to age‐ and sex‐specific differences in nutrient requirements and hormone levels. These results highlight the importance of host age and sex on the structure and function of the gut microbiota and the need to consider physiological traits when conducting studies on the gut microbiota.