Cargando…
Controlling nonlinear dynamical systems into arbitrary states using machine learning
Controlling nonlinear dynamical systems is a central task in many different areas of science and engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing approaches either require knowledge about the underlying system equations or large data sets as they...
Autores principales: | Haluszczynski, Alexander, Räth, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217470/ https://www.ncbi.nlm.nih.gov/pubmed/34155228 http://dx.doi.org/10.1038/s41598-021-92244-6 |
Ejemplares similares
-
Uncertainty quantification of multi-scale resilience in networked systems with nonlinear dynamics using arbitrary polynomial chaos
por: Zou, Mengbang, et al.
Publicado: (2023) -
Machine learning control: taming nonlinear dynamics and turbulence
por: Duriez, Thomas, et al.
Publicado: (2017) -
Dynamics of number systems: computation with arbitrary precision
por: Kurka, Petr
Publicado: (2016) -
Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity
por: Wang, Mei-Yu, et al.
Publicado: (2016) -
Ghost hunting in the nonlinear dynamic machine
por: Butner, Jonathan E., et al.
Publicado: (2019)