Cargando…
Domain knowledge integration into deep learning for typhoon intensity classification
In this report, we propose a deep learning technique for high-accuracy estimation of the intensity class of a typhoon from a single satellite image, by incorporating meteorological domain knowledge. By using the Visual Geometric Group’s model, VGG-16, with images preprocessed with fisheye distortion...
Autores principales: | Higa, Maiki, Tanahara, Shinya, Adachi, Yoshitaka, Ishiki, Natsumi, Nakama, Shin, Yamada, Hiroyuki, Ito, Kosuke, Kitamoto, Asanobu, Miyata, Ryota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217498/ https://www.ncbi.nlm.nih.gov/pubmed/34155252 http://dx.doi.org/10.1038/s41598-021-92286-w |
Ejemplares similares
-
Typhoon : and other tales
por: Conrad, Joseph, 1857-1924
Publicado: (1962) -
Leptospirosis after Typhoon
por: Lin, Chien-Yu, et al.
Publicado: (2012) -
Integrating nonstationary behaviors of typhoon and non-typhoon extreme rainfall events in East Asia
por: Son, Chanyoung, et al.
Publicado: (2017) -
On the mechanisms of the recurvature of super typhoon Megi
por: Peng, Shiqiu, et al.
Publicado: (2014) -
Rainfall-enhanced blooming in typhoon wakes
por: Lin, Y.-C., et al.
Publicado: (2016)