Cargando…
Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique
BACKGROUND: Soil salinity is a major abiotic stress that limits plant growth and yield worldwide. OBJECTIVE: To better understand the mechanism of salt stress adaptation in maize (Zea may), proteomic analysis of maize responses to salt stress were analyzed in seedling. MATERIALS AND METHODS: Taking...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Genetic Engineering and Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217532/ https://www.ncbi.nlm.nih.gov/pubmed/34179187 http://dx.doi.org/10.30498/IJB.2021.2512 |
_version_ | 1783710610463129600 |
---|---|
author | Weng, Qiaoyun Zhao, Yanmin Yanan, Zhao Song, Xiaoqing Yuan, Jincheng Liu, Yinghui |
author_facet | Weng, Qiaoyun Zhao, Yanmin Yanan, Zhao Song, Xiaoqing Yuan, Jincheng Liu, Yinghui |
author_sort | Weng, Qiaoyun |
collection | PubMed |
description | BACKGROUND: Soil salinity is a major abiotic stress that limits plant growth and yield worldwide. OBJECTIVE: To better understand the mechanism of salt stress adaptation in maize (Zea may), proteomic analysis of maize responses to salt stress were analyzed in seedling. MATERIALS AND METHODS: Taking maize seedlings untreated and treated with NaCl for 24 h as material, isobaric tags for relative and absolute quantitation (iTRAQ) were used to analyze the protein expression profile of maize seedlings after salt stress. RESULTS: The result showed that 270 differentially expression proteins (DEPs) were identified in maize seedlings after salt stress. The majority proteins had functions related to translation, ribosomal structure and biogenesis (15%), posttranslational modification, protein turnover, chaperones (14%) and others metabolism. Quantitative real-time PCR analysis showed that the EF-Tu, peroxiredoxin, FoF1-type ATP synthase, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, Acetyl-CoA acetyltransferase and nucleoside diphosphate kinase genes were up-regulated in the adaptation of maize to salt stress. CONCLUSIONS: The coped with salt stress of maize seedlings might be included nitrogen and glutamate (Glu) metabolism and energy homeostasis, nucleotide transport and metabolism, soluble sugar, fatty acid and nucleoside triphosphates synthesis. Moreover, the enhancement of plant to scavenge ROS, such as peroxiredoxin, might play significant roles in the adaptation of maize to salt stress.Taken together, these proteins might have important roles in defense mechanisms against salt stress in maize.We hope that this study provides valuable information for the further utilization and study on the molecular mechanisms of defense mechanisms in maize. |
format | Online Article Text |
id | pubmed-8217532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Institute of Genetic Engineering and Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-82175322021-06-25 Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique Weng, Qiaoyun Zhao, Yanmin Yanan, Zhao Song, Xiaoqing Yuan, Jincheng Liu, Yinghui Iran J Biotechnol Research Article BACKGROUND: Soil salinity is a major abiotic stress that limits plant growth and yield worldwide. OBJECTIVE: To better understand the mechanism of salt stress adaptation in maize (Zea may), proteomic analysis of maize responses to salt stress were analyzed in seedling. MATERIALS AND METHODS: Taking maize seedlings untreated and treated with NaCl for 24 h as material, isobaric tags for relative and absolute quantitation (iTRAQ) were used to analyze the protein expression profile of maize seedlings after salt stress. RESULTS: The result showed that 270 differentially expression proteins (DEPs) were identified in maize seedlings after salt stress. The majority proteins had functions related to translation, ribosomal structure and biogenesis (15%), posttranslational modification, protein turnover, chaperones (14%) and others metabolism. Quantitative real-time PCR analysis showed that the EF-Tu, peroxiredoxin, FoF1-type ATP synthase, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, Acetyl-CoA acetyltransferase and nucleoside diphosphate kinase genes were up-regulated in the adaptation of maize to salt stress. CONCLUSIONS: The coped with salt stress of maize seedlings might be included nitrogen and glutamate (Glu) metabolism and energy homeostasis, nucleotide transport and metabolism, soluble sugar, fatty acid and nucleoside triphosphates synthesis. Moreover, the enhancement of plant to scavenge ROS, such as peroxiredoxin, might play significant roles in the adaptation of maize to salt stress.Taken together, these proteins might have important roles in defense mechanisms against salt stress in maize.We hope that this study provides valuable information for the further utilization and study on the molecular mechanisms of defense mechanisms in maize. National Institute of Genetic Engineering and Biotechnology 2021-01-01 /pmc/articles/PMC8217532/ /pubmed/34179187 http://dx.doi.org/10.30498/IJB.2021.2512 Text en Copyright: © 2021 The Author(s); Published by Iranian Journal of Biotechnology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License, ( http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Weng, Qiaoyun Zhao, Yanmin Yanan, Zhao Song, Xiaoqing Yuan, Jincheng Liu, Yinghui Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title | Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title_full | Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title_fullStr | Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title_full_unstemmed | Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title_short | Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique |
title_sort | identification of salt stress-responsive proteins in maize (zea may) seedlings using itraq-based proteomic technique |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217532/ https://www.ncbi.nlm.nih.gov/pubmed/34179187 http://dx.doi.org/10.30498/IJB.2021.2512 |
work_keys_str_mv | AT wengqiaoyun identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique AT zhaoyanmin identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique AT yananzhao identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique AT songxiaoqing identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique AT yuanjincheng identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique AT liuyinghui identificationofsaltstressresponsiveproteinsinmaizezeamayseedlingsusingitraqbasedproteomictechnique |