Cargando…
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
Nearly half of patients with prostate cancer (PCa) harbour low- or intermediate-risk disease considered suitable for active surveillance (AS). However, up to 44% of patients discontinue AS within the first five years, highlighting the unmet clinical need for robust baseline risk-stratification tools...
Autores principales: | Sushentsev, Nikita, Rundo, Leonardo, Blyuss, Oleg, Gnanapragasam, Vincent J., Sala, Evis, Barrett, Tristan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217549/ https://www.ncbi.nlm.nih.gov/pubmed/34155265 http://dx.doi.org/10.1038/s41598-021-92341-6 |
Ejemplares similares
-
Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance
por: Sushentsev, Nikita, et al.
Publicado: (2021) -
Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance
por: Sushentsev, Nikita, et al.
Publicado: (2023) -
Serial changes in tumour measurements and apparent diffusion coefficients in prostate cancer patients on active surveillance with and without histopathological progression
por: Sushentsev, Nikita, et al.
Publicado: (2022) -
MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance
por: Caglic, Iztok, et al.
Publicado: (2020) -
Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review
por: Sushentsev, Nikita, et al.
Publicado: (2022)