Cargando…

Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage

Entangled states are crucial for modern quantum enabled technology which makes their creation key for future developments. In this paper, a robust quantum control methodology is presented to create entangled states of two typical classes, the W and the Greenberger–Horne–Zeilinger (GHZ). It was devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Pachniak, Elliot, Malinovskaya, Svetlana A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217571/
https://www.ncbi.nlm.nih.gov/pubmed/34155254
http://dx.doi.org/10.1038/s41598-021-92325-6
Descripción
Sumario:Entangled states are crucial for modern quantum enabled technology which makes their creation key for future developments. In this paper, a robust quantum control methodology is presented to create entangled states of two typical classes, the W and the Greenberger–Horne–Zeilinger (GHZ). It was developed from the analysis of a chain of alkali atoms [Formula: see text] interaction with laser pulses, which leads to the two-photon transitions from the ground to the Rydberg states with a predetermined magnetic quantum number. The methodology is based on the mechanism of the two-photon excitation, adiabatic for the GHZ and non-adiabatic for the W state, induced by the overlapping chirped pulses and governed by the Rabi frequency, the one-photon detuning, and the strength of the Rydberg–Rydberg interactions.