Cargando…
Deep learning-based object recognition in multispectral satellite imagery for real-time applications
Satellite imagery is changing the way we understand and predict economic activity in the world. Advancements in satellite hardware and low-cost rocket launches have enabled near-real-time, high-resolution images covering the entire Earth. It is too labour-intensive, time-consuming and expensive for...
Autores principales: | Gudžius, Povilas, Kurasova, Olga, Darulis, Vytenis, Filatovas, Ernestas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217787/ https://www.ncbi.nlm.nih.gov/pubmed/34177121 http://dx.doi.org/10.1007/s00138-021-01209-2 |
Ejemplares similares
-
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery
por: Alexakis, Dimitrios, et al.
Publicado: (2009) -
Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning
por: Balaniuk, Remis, et al.
Publicado: (2020) -
Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas
por: de Meester, Jasper, et al.
Publicado: (2020) -
Reclamation and Ecological Service Value Evaluation of Coastal Wetlands Using Multispectral Satellite Imagery
por: Yan, Jinfeng, et al.
Publicado: (2022)