Cargando…
Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost
The COVID-19 pandemic, which originated in December 2019 in the city of Wuhan, China, continues to have a devastating effect on the health and well-being of the global population. Currently, approximately 8.8 million people have already been infected and more than 465,740 people have died worldwide....
Autores principales: | Dias Júnior, Domingos Alves, da Cruz, Luana Batista, Bandeira Diniz, João Otávio, França da Silva, Giovanni Lucca, Junior, Geraldo Braz, Silva, Aristófanes Corrêa, de Paiva, Anselmo Cardoso, Nunes, Rodolfo Acatauassú, Gattass, Marcelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218245/ https://www.ncbi.nlm.nih.gov/pubmed/34177133 http://dx.doi.org/10.1016/j.eswa.2021.115452 |
Ejemplares similares
-
Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed
por: Sousa, Jefferson Alves, et al.
Publicado: (2021) -
Semivariogram and Semimadogram functions as descriptors for AMD diagnosis on SD-OCT topographic maps using Support Vector Machine
por: Santos, Alex M., et al.
Publicado: (2018) -
Segmentation and quantification of COVID-19 infections in CT using pulmonary vessels extraction and deep learning
por: Diniz, João O. B., et al.
Publicado: (2021) -
Machine learning–XGBoost analysis of language networks to classify patients with epilepsy
por: Torlay, L., et al.
Publicado: (2017) -
XGSleeve: detecting sleeve incidents in well completion by using XGBoost classifier
por: Somi, Sahand, et al.
Publicado: (2023)