Cargando…
SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
Spatial transcriptomic studies are becoming increasingly common and large, posing important statistical and computational challenges for many analytic tasks. Here, we present SPARK-X, a non-parametric method for rapid and effective detection of spatially expressed genes in large spatial transcriptom...
Autores principales: | Zhu, Jiaqiang, Sun, Shiquan, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218388/ https://www.ncbi.nlm.nih.gov/pubmed/34154649 http://dx.doi.org/10.1186/s13059-021-02404-0 |
Ejemplares similares
-
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023) -
Scalable and model-free detection of spatial patterns and colocalization
por: Liu, Qi, et al.
Publicado: (2022) -
BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies
por: Li, Zheng, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
por: Sun, Shiquan, et al.
Publicado: (2019)