Cargando…
Optimized algorithm for multipoint geostatistical facies modeling based on a deep feedforward neural network
Reservoir facies modeling is an important way to express the sedimentary characteristics of the target area. Conventional deterministic modeling, target-based stochastic simulation, and two-point geostatistical stochastic modeling methods are difficult to characterize the complex sedimentary microfa...
Autores principales: | Yao, Jianpeng, Liu, Wenling, Liu, Qingbin, Liu, Yuyang, Chen, Xiaodong, Pan, Mao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219166/ https://www.ncbi.nlm.nih.gov/pubmed/34157029 http://dx.doi.org/10.1371/journal.pone.0253174 |
Ejemplares similares
-
Comparison of Geostatistical Kriging Algorithms for Intertidal Surface Sediment Facies Mapping with Grain Size Data
por: Park, No-Wook, et al.
Publicado: (2014) -
Facies-Controlled Geostatistical Porosity Model for
Estimation of the Groundwater Potential Area in Hongliu Coalmine,
Ordos Basin, China
por: Li, Liyao, et al.
Publicado: (2021) -
BatTS: a hybrid method for optimizing deep feedforward neural network
por: Pan, Sichen, et al.
Publicado: (2023) -
Phase Optimization for Multipoint Haptic Feedback Based on Ultrasound Array
por: Long, Zhili, et al.
Publicado: (2022) -
Geostatistical simulation: models and algorithms
por: Lantuéjoul, Christian
Publicado: (2002)