Cargando…
Computing Leapfrog Regularization Paths with Applications to Large-Scale K-mer Logistic Regression
High-dimensional statistics deals with statistical inference when the number of parameters or features p exceeds the number of observations n (i.e., [Formula: see text]). In this case, the parameter space must be constrained either by regularization or by selecting a small subset of [Formula: see te...
Autor principal: | Benner, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219187/ https://www.ncbi.nlm.nih.gov/pubmed/33739865 http://dx.doi.org/10.1089/cmb.2020.0284 |
Ejemplares similares
-
Leapfrogging
por: Kaplan, Soren
Publicado: (2012) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
Random forest versus logistic regression: a large-scale benchmark experiment
por: Couronné, Raphael, et al.
Publicado: (2018) -
Leapfrogging with technology: introduction of a monitoring platform to support a large-scale Ebola vaccination program in Rwanda
por: Mc Kenna, Paula, et al.
Publicado: (2021)