Cargando…
Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis
BACKGROUND: The lack of explanations for the decisions made by deep learning algorithms has hampered their acceptance by the clinical community despite highly accurate results on multiple problems. Attribution methods explaining deep learning models have been tested on medical imaging problems. The...
Autores principales: | Singh, Amitojdeep, Jothi Balaji, Janarthanam, Rasheed, Mohammed Abdul, Jayakumar, Varadharajan, Raman, Rajiv, Lakshminarayanan, Vasudevan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219310/ https://www.ncbi.nlm.nih.gov/pubmed/34177258 http://dx.doi.org/10.2147/OPTH.S312236 |
Ejemplares similares
-
Explainable Deep Learning Models in Medical Image Analysis
por: Singh, Amitojdeep, et al.
Publicado: (2020) -
Relationship Between Posterior Vitreous Detachment and Macular Dimensions in Myopic Eyes
por: Jothi Balaji, Janarthanam, et al.
Publicado: (2022) -
ODTiD: Optic Nerve Head SD-OCT Image Dataset
por: Jothi Balaji, Janarthanam, et al.
Publicado: (2021) -
Automated Detection and Diagnosis of Diabetic Retinopathy: A Comprehensive Survey
por: Lakshminarayanan, Vasudevan, et al.
Publicado: (2021) -
OW-SLR: Overlapping Windows on Semi-Local Region for Image Super-Resolution
por: Bhardwaj, Rishav, et al.
Publicado: (2023)