Cargando…

A Comparative Study on Anticancer Effects of the Alhagi maurorum and Amygdalus haussknechtii Extracts Alone and in Combination with Docetaxel on 4T1 Breast Cancer Cells

Medicinal plants have long been studied due to their anticancer effects and use of them is commonly increased as a complementary and alternative medicine (CAM therapies) among patients with cancer. In this study, Alhagi maurorum (A.m) and Amygdalus haussknechtii (A.h) extracts were evaluated for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahamin, Nayereh, Ahmadian, Shahin, Rafieian-Kopaei, Mahmoud, Mobini, Gholamreza, Shafiezadeh, Mahshid, Soltani, Amin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219415/
https://www.ncbi.nlm.nih.gov/pubmed/34221071
http://dx.doi.org/10.1155/2021/5517944
Descripción
Sumario:Medicinal plants have long been studied due to their anticancer effects and use of them is commonly increased as a complementary and alternative medicine (CAM therapies) among patients with cancer. In this study, Alhagi maurorum (A.m) and Amygdalus haussknechtii (A.h) extracts were evaluated for their effects on inhibiting the growth of 4T1 breast cancer cells. Based on MTT assay results, the IC50s of A.m and A.h extracts were 57 µg/ml and 85 µg/ml, respectively. Then the cell migration, gene expression, and degree of apoptosis after 48 hours in each treated group with A.m and A.h extracts alone or in combination with docetaxel (DTX) on 4T1 cells were evaluated. A.m had a synergistic behavior with DTX (CI < 1). A.h reduced DTX IC50 but presented CI > 1. Cell migration assay showed that each extract alone or in combination with DTX prevented the migration of 4T1 cells. The Ao/EB staining and flowcytometry results confirmed that, in combination therapy, A.m + DTX and A.h + DTX induced apoptosis close to the level of DTX. Real-time PCR analysis showed that A.m + DTX (IC50 + IC25) downregulated the mRNA expression of HIF-1α and FZD7. A.m + DTX (IC50 + IC10) group decreased the expression of HIF-1α. Moreover, in A.h + DTX (IC50 + IC25) group, β-Catenin and FZD7 were downregulated and upregulated, respectively. Generally, our findings suggest that the combination of A.m and DTX possesses synergistic antitumor effects on 4T1 cells, which may be a valuable choice for CAM therapies. A.h has an acceptable antitumor activity but not in combination with DTX.