Cargando…
Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke
This study investigated whether the mitochondrial-targeted peptide SS-31 can protect against cigarette smoke- (CS-) induced airway inflammation and oxidative stress in vitro and in vivo. Mice were exposed to CS for 4 weeks to establish a CS-induced airway inflammation model, and those in the experim...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219423/ https://www.ncbi.nlm.nih.gov/pubmed/34221235 http://dx.doi.org/10.1155/2021/6644238 |
_version_ | 1783710923804901376 |
---|---|
author | Yang, De-qing Zuo, Qiu-nan Wang, Tao Xu, Dan Lian, Liu Gao, Li-juan Wan, Chun Chen, Lei Wen, Fu-qiang Shen, Yong-chun |
author_facet | Yang, De-qing Zuo, Qiu-nan Wang, Tao Xu, Dan Lian, Liu Gao, Li-juan Wan, Chun Chen, Lei Wen, Fu-qiang Shen, Yong-chun |
author_sort | Yang, De-qing |
collection | PubMed |
description | This study investigated whether the mitochondrial-targeted peptide SS-31 can protect against cigarette smoke- (CS-) induced airway inflammation and oxidative stress in vitro and in vivo. Mice were exposed to CS for 4 weeks to establish a CS-induced airway inflammation model, and those in the experimental group were pretreated with SS-31 1 h before CS exposure. Pathologic changes and oxidative stress in lung tissue, inflammatory cell counts, and proinflammatory cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. The mechanistic basis for the effects of SS-31 on CS extract- (CSE-) induced airway inflammation and oxidative stress was investigated using BEAS-2B bronchial epithelial cells and by RNA sequencing and western blot analysis of lung tissues. SS-31 attenuated CS-induced inflammatory injury of the airway and reduced total cell, neutrophil, and macrophage counts and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, and matrix metalloproteinase (MMP) 9 levels in BALF. SS-31 also attenuated CS-induced oxidative stress by decreasing malondialdehyde (MDA) and myeloperoxidase (MPO) activities and increasing that of superoxide dismutase (SOD). It also reversed CS-induced changes in the expression of mitochondrial fission protein (MFF) and optic atrophy (OPA) 1 and reduced the amount of cytochrome c released into the cytosol. Pretreatment with SS-31 normalized TNF-α, IL-6, and MMP9 expression, MDA and SOD activities, and ROS generation in CSE-treated BEAS-2B cells and reversed the changes in MFF and OPA1 expression. RNA sequencing and western blot analysis showed that SS-31 inhibited CS-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway in vitro and in vivo. Thus, SS-31 alleviates CS-induced airway inflammation and oxidative stress via modulation of mitochondrial function and regulation of MAPK signaling and thus has therapeutic potential for the treatment of airway disorders caused by smoking. |
format | Online Article Text |
id | pubmed-8219423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-82194232021-07-02 Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke Yang, De-qing Zuo, Qiu-nan Wang, Tao Xu, Dan Lian, Liu Gao, Li-juan Wan, Chun Chen, Lei Wen, Fu-qiang Shen, Yong-chun Oxid Med Cell Longev Research Article This study investigated whether the mitochondrial-targeted peptide SS-31 can protect against cigarette smoke- (CS-) induced airway inflammation and oxidative stress in vitro and in vivo. Mice were exposed to CS for 4 weeks to establish a CS-induced airway inflammation model, and those in the experimental group were pretreated with SS-31 1 h before CS exposure. Pathologic changes and oxidative stress in lung tissue, inflammatory cell counts, and proinflammatory cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. The mechanistic basis for the effects of SS-31 on CS extract- (CSE-) induced airway inflammation and oxidative stress was investigated using BEAS-2B bronchial epithelial cells and by RNA sequencing and western blot analysis of lung tissues. SS-31 attenuated CS-induced inflammatory injury of the airway and reduced total cell, neutrophil, and macrophage counts and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, and matrix metalloproteinase (MMP) 9 levels in BALF. SS-31 also attenuated CS-induced oxidative stress by decreasing malondialdehyde (MDA) and myeloperoxidase (MPO) activities and increasing that of superoxide dismutase (SOD). It also reversed CS-induced changes in the expression of mitochondrial fission protein (MFF) and optic atrophy (OPA) 1 and reduced the amount of cytochrome c released into the cytosol. Pretreatment with SS-31 normalized TNF-α, IL-6, and MMP9 expression, MDA and SOD activities, and ROS generation in CSE-treated BEAS-2B cells and reversed the changes in MFF and OPA1 expression. RNA sequencing and western blot analysis showed that SS-31 inhibited CS-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway in vitro and in vivo. Thus, SS-31 alleviates CS-induced airway inflammation and oxidative stress via modulation of mitochondrial function and regulation of MAPK signaling and thus has therapeutic potential for the treatment of airway disorders caused by smoking. Hindawi 2021-06-15 /pmc/articles/PMC8219423/ /pubmed/34221235 http://dx.doi.org/10.1155/2021/6644238 Text en Copyright © 2021 De-qing Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, De-qing Zuo, Qiu-nan Wang, Tao Xu, Dan Lian, Liu Gao, Li-juan Wan, Chun Chen, Lei Wen, Fu-qiang Shen, Yong-chun Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title | Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title_full | Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title_fullStr | Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title_full_unstemmed | Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title_short | Mitochondrial-Targeting Antioxidant SS-31 Suppresses Airway Inflammation and Oxidative Stress Induced by Cigarette Smoke |
title_sort | mitochondrial-targeting antioxidant ss-31 suppresses airway inflammation and oxidative stress induced by cigarette smoke |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219423/ https://www.ncbi.nlm.nih.gov/pubmed/34221235 http://dx.doi.org/10.1155/2021/6644238 |
work_keys_str_mv | AT yangdeqing mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT zuoqiunan mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT wangtao mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT xudan mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT lianliu mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT gaolijuan mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT wanchun mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT chenlei mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT wenfuqiang mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke AT shenyongchun mitochondrialtargetingantioxidantss31suppressesairwayinflammationandoxidativestressinducedbycigarettesmoke |