Cargando…
Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice
The energy balance and life cycle assessment (LCA) of ohmic heating and appertization systems for processing of chopped tomatoes with juice (CTwJ) were evaluated. The data included in the study, such as processing conditions, energy consumption, and water use, were experimentally collected. The func...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219726/ https://www.ncbi.nlm.nih.gov/pubmed/34158552 http://dx.doi.org/10.1038/s41598-021-92211-1 |
_version_ | 1783710998294691840 |
---|---|
author | Ghnimi, Sami Nikkhah, Amin Dewulf, Jo Van Haute, Sam |
author_facet | Ghnimi, Sami Nikkhah, Amin Dewulf, Jo Van Haute, Sam |
author_sort | Ghnimi, Sami |
collection | PubMed |
description | The energy balance and life cycle assessment (LCA) of ohmic heating and appertization systems for processing of chopped tomatoes with juice (CTwJ) were evaluated. The data included in the study, such as processing conditions, energy consumption, and water use, were experimentally collected. The functional unit was considered to be 1 kg of packaged CTwJ. Six LCA impact assessment methodologies were evaluated for uncertainty analysis of selection of the impact assessment methodology. The energy requirement evaluation showed the highest energy consumption for appertization (156 kWh/t of product). The energy saving of the ohmic heating line compared to the appertization line is 102 kWh/t of the product (or 65% energy saving). The energy efficiencies of the appertization and ohmic heating lines are 25% and 77%, respectively. Regarding the environmental impact, CTwJ processing and packaging by appertization were higher than those of ohmic heating systems. In other words, CTwJ production by the ohmic heating system was more environmentally efficient. The tin production phase was the environmental hotspot in packaged CTwJ production by the appertization system; however, the agricultural phase of production was the hotspot in ohmic heating processing. The uncertainty analysis results indicated that the global warming potential for appertization of 1 kg of packaged CTwJ ranges from 4.13 to 4.44 kg CO(2)eq. In addition, the global warming potential of the ohmic heating system ranges from 2.50 to 2.54 kg CO(2)eq. This study highlights that ohmic heating presents a great alternative to conventional sterilization methods due to its low environmental impact and high energy efficiency. |
format | Online Article Text |
id | pubmed-8219726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82197262021-06-24 Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice Ghnimi, Sami Nikkhah, Amin Dewulf, Jo Van Haute, Sam Sci Rep Article The energy balance and life cycle assessment (LCA) of ohmic heating and appertization systems for processing of chopped tomatoes with juice (CTwJ) were evaluated. The data included in the study, such as processing conditions, energy consumption, and water use, were experimentally collected. The functional unit was considered to be 1 kg of packaged CTwJ. Six LCA impact assessment methodologies were evaluated for uncertainty analysis of selection of the impact assessment methodology. The energy requirement evaluation showed the highest energy consumption for appertization (156 kWh/t of product). The energy saving of the ohmic heating line compared to the appertization line is 102 kWh/t of the product (or 65% energy saving). The energy efficiencies of the appertization and ohmic heating lines are 25% and 77%, respectively. Regarding the environmental impact, CTwJ processing and packaging by appertization were higher than those of ohmic heating systems. In other words, CTwJ production by the ohmic heating system was more environmentally efficient. The tin production phase was the environmental hotspot in packaged CTwJ production by the appertization system; however, the agricultural phase of production was the hotspot in ohmic heating processing. The uncertainty analysis results indicated that the global warming potential for appertization of 1 kg of packaged CTwJ ranges from 4.13 to 4.44 kg CO(2)eq. In addition, the global warming potential of the ohmic heating system ranges from 2.50 to 2.54 kg CO(2)eq. This study highlights that ohmic heating presents a great alternative to conventional sterilization methods due to its low environmental impact and high energy efficiency. Nature Publishing Group UK 2021-06-22 /pmc/articles/PMC8219726/ /pubmed/34158552 http://dx.doi.org/10.1038/s41598-021-92211-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ghnimi, Sami Nikkhah, Amin Dewulf, Jo Van Haute, Sam Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title | Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title_full | Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title_fullStr | Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title_full_unstemmed | Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title_short | Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
title_sort | life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219726/ https://www.ncbi.nlm.nih.gov/pubmed/34158552 http://dx.doi.org/10.1038/s41598-021-92211-1 |
work_keys_str_mv | AT ghnimisami lifecycleassessmentandenergycomparisonofasepticohmicheatingandappertizationofchoppedtomatoeswithjuice AT nikkhahamin lifecycleassessmentandenergycomparisonofasepticohmicheatingandappertizationofchoppedtomatoeswithjuice AT dewulfjo lifecycleassessmentandenergycomparisonofasepticohmicheatingandappertizationofchoppedtomatoeswithjuice AT vanhautesam lifecycleassessmentandenergycomparisonofasepticohmicheatingandappertizationofchoppedtomatoeswithjuice |