Cargando…
AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
The ability to accurately and consistently discover anomalies in time series is important in many applications. Fields such as finance (fraud detection), information security (intrusion detection), healthcare, and others all benefit from anomaly detection. Intuitively, anomalies in time series are t...
Autores principales: | Zhang, Lin, Zhang, Wenyu, McNeil, Maxwell J., Chengwang, Nachuan, Matteson, David S., Bogdanov, Petko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220123/ https://www.ncbi.nlm.nih.gov/pubmed/34177356 http://dx.doi.org/10.1007/s10618-021-00771-7 |
Ejemplares similares
-
Equatorial aurora: the aurora-like airglow in the negative magnetic anomaly
por: He, Fei, et al.
Publicado: (2020) -
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
por: Xu, Rui, et al.
Publicado: (2010) -
Unified $f(R)$ gravity at local scales
por: Kumar Sharma, Vipin, et al.
Publicado: (2022) -
Ensemble Neuroevolution-Based Approach for Multivariate Time Series Anomaly Detection
por: Faber, Kamil, et al.
Publicado: (2021) -
Anomaly detection using spatial and temporal information in multivariate time series
por: Tian, Zhiwen, et al.
Publicado: (2023)