Cargando…
Identifying and characterizing different stages toward Alzheimer's disease using ordered core features and machine learning
Based on the joint HCPMMP parcellation method we developed before, which divides the cortical brain into 360 regions, the concept of ordered core features (OCF) is first proposed to reveal the functional brain connectivity relationship among different cohorts of Alzheimer's disease (AD), late m...
Autores principales: | Sheng, Jinhua, Wang, Bocheng, Zhang, Qiao, Zhou, Rougang, Wang, Luyun, Xin, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220177/ https://www.ncbi.nlm.nih.gov/pubmed/34189320 http://dx.doi.org/10.1016/j.heliyon.2021.e07287 |
Ejemplares similares
-
Alzheimer’s disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning
por: Sheng, Jinhua, et al.
Publicado: (2020) -
Connectivity and variability of related cognitive subregions lead to different stages of progression toward Alzheimer's disease
por: Sheng, Jinhua, et al.
Publicado: (2022) -
Dissociation of energy connectivity and functional connectivity in Alzheimer's disease is associated with maintenance of cognitive performance
por: Sheng, Jinhua, et al.
Publicado: (2023) -
Predictive classification of Alzheimer’s disease using brain imaging and genetic data
por: Sheng, Jinhua, et al.
Publicado: (2022) -
A novel reconstruction method combining multi-detector SPECT with an elliptical orbit and computer tomography for cardiac imaging
por: Sheng, Jinhua, et al.
Publicado: (2023)