Cargando…
Automatic gender detection in Twitter profiles for health-related cohort studies
OBJECTIVE: Biomedical research involving social media data is gradually moving from population-level to targeted, cohort-level data analysis. Though crucial for biomedical studies, social media user’s demographic information (eg, gender) is often not explicitly known from profiles. Here, we present...
Autores principales: | Yang, Yuan-Chi, Al-Garadi, Mohammed Ali, Love, Jennifer S, Perrone, Jeanmarie, Sarker, Abeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220305/ https://www.ncbi.nlm.nih.gov/pubmed/34169232 http://dx.doi.org/10.1093/jamiaopen/ooab042 |
Ejemplares similares
-
Can accurate demographic information about people who use prescription medications nonmedically be derived from Twitter?
por: Yang, Yuan-Chi, et al.
Publicado: (2023) -
Text classification models for the automatic detection of nonmedical prescription medication use from social media
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2021) -
Automatic Detection of Twitter Users Who Express Chronic Stress Experiences via Supervised Machine Learning and Natural Language Processing
por: Yang, Yuan-Chi, et al.
Publicado: (2022) -
Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid
por: Yang, Yuan-Chi, et al.
Publicado: (2021) -
Natural language model for automatic identification of Intimate Partner Violence reports from Twitter
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2022)