Cargando…

Dataset on the effect of Rubicon overexpression on polyglutamine-induced locomotor dysfunction in Drosophila

The accumulation of pathogenic misfolded proteins is believed to be a common mechanism of generation of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. The autophagy–lysosome degradation system has been considered as a poten...

Descripción completa

Detalles Bibliográficos
Autores principales: Oba, Masaki, Fukui, Koji, Sango, Kazunori, Suzuki, Mari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220321/
https://www.ncbi.nlm.nih.gov/pubmed/34189208
http://dx.doi.org/10.1016/j.dib.2021.107222
Descripción
Sumario:The accumulation of pathogenic misfolded proteins is believed to be a common mechanism of generation of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. The autophagy–lysosome degradation system has been considered as a potential therapeutic target against these disorders, as it is able to degrade large protein aggregates. Previously, we focused on Rubicon, a negative regulator of autophagy, and demonstrated that knockdown of the Drosophila homolog of Rubicon (dRubicon) suppressed locomotor dysfunction in a fly model of polyQ disease. This suppression was associated with increased autophagic activity and a marked reduction in the number of polyQ inclusion bodies [1]. We generated transgenic fly lines expressing hemagglutinin-tagged dRubicon wild-type (WT) or dRubicon in which the RUN [after RPIP8 (RaP2 interacting protein 8), UNC-14 and NESCA (new molecule containing SH3 at the carboxyl-terminus)] domain was deleted (ΔRUN). We provide data regarding the effect of WT and ΔRUN dRubicon co-expression on polyQ-induced locomotor dysfunction in Drosophila.