Cargando…
Dataset on the effect of Rubicon overexpression on polyglutamine-induced locomotor dysfunction in Drosophila
The accumulation of pathogenic misfolded proteins is believed to be a common mechanism of generation of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. The autophagy–lysosome degradation system has been considered as a poten...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220321/ https://www.ncbi.nlm.nih.gov/pubmed/34189208 http://dx.doi.org/10.1016/j.dib.2021.107222 |
Sumario: | The accumulation of pathogenic misfolded proteins is believed to be a common mechanism of generation of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and polyglutamine (polyQ) diseases. The autophagy–lysosome degradation system has been considered as a potential therapeutic target against these disorders, as it is able to degrade large protein aggregates. Previously, we focused on Rubicon, a negative regulator of autophagy, and demonstrated that knockdown of the Drosophila homolog of Rubicon (dRubicon) suppressed locomotor dysfunction in a fly model of polyQ disease. This suppression was associated with increased autophagic activity and a marked reduction in the number of polyQ inclusion bodies [1]. We generated transgenic fly lines expressing hemagglutinin-tagged dRubicon wild-type (WT) or dRubicon in which the RUN [after RPIP8 (RaP2 interacting protein 8), UNC-14 and NESCA (new molecule containing SH3 at the carboxyl-terminus)] domain was deleted (ΔRUN). We provide data regarding the effect of WT and ΔRUN dRubicon co-expression on polyQ-induced locomotor dysfunction in Drosophila. |
---|