Cargando…
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
PURPOSE: To investigate the dosimetric impact of deep learning-based auto-segmentation of organs at risk (OARs) on nasopharyngeal and rectal cancer. METHODS AND MATERIALS: Twenty patients, including ten nasopharyngeal carcinoma (NPC) patients and ten rectal cancer patients, who received radiotherapy...
Autores principales: | Guo, Hongbo, Wang, Jiazhou, Xia, Xiang, Zhong, Yang, Peng, Jiayuan, Zhang, Zhen, Hu, Weigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220801/ https://www.ncbi.nlm.nih.gov/pubmed/34162410 http://dx.doi.org/10.1186/s13014-021-01837-y |
Ejemplares similares
-
Geometric and dosimetric evaluation of deep learning based auto‐segmentation for clinical target volume on breast cancer
por: Zhong, Yang, et al.
Publicado: (2023) -
Dosimetric comparisons of VMAT, IMRT and 3DCRT for locally advanced rectal cancer with simultaneous integrated boost
por: Zhao, Jun, et al.
Publicado: (2015) -
MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy
por: Zhao, Jun, et al.
Publicado: (2021) -
A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases
por: Zhong, Yang, et al.
Publicado: (2021) -
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
por: Kawula, Maria, et al.
Publicado: (2022)