Cargando…

Dynamically Optimizing Network Structure Based on Synaptic Pruning in the Brain

Most neural networks need to predefine the network architecture empirically, which may cause over-fitting or under-fitting. Besides, a large number of parameters in a fully connected network leads to the prohibitively expensive computational cost and storage overhead, which makes the model hard to b...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Feifei, Zeng, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220807/
https://www.ncbi.nlm.nih.gov/pubmed/34177473
http://dx.doi.org/10.3389/fnsys.2021.620558

Ejemplares similares