Cargando…
Dynamically Optimizing Network Structure Based on Synaptic Pruning in the Brain
Most neural networks need to predefine the network architecture empirically, which may cause over-fitting or under-fitting. Besides, a large number of parameters in a fully connected network leads to the prohibitively expensive computational cost and storage overhead, which makes the model hard to b...
Autores principales: | Zhao, Feifei, Zeng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220807/ https://www.ncbi.nlm.nih.gov/pubmed/34177473 http://dx.doi.org/10.3389/fnsys.2021.620558 |
Ejemplares similares
-
Autophagy-Mediated Synaptic Refinement and Auditory Neural Pruning Contribute to Ribbon Synaptic Maturity in the Developing Cochlea
por: Guo, Rui, et al.
Publicado: (2022) -
Synaptic Pruning by Microglia in Epilepsy
por: Andoh, Megumi, et al.
Publicado: (2019) -
Humans parsimoniously represent auditory sequences by pruning and completing the underlying network structure
por: Benjamin, Lucas, et al.
Publicado: (2023) -
SNAP: a structure-based neuron morphology reconstruction automatic pruning pipeline
por: Ding, Liya, et al.
Publicado: (2023) -
The information theory of developmental pruning: Optimizing global network architectures using local synaptic rules
por: Scholl, Carolin, et al.
Publicado: (2021)