Cargando…
CT-based multi-phase Radiomic models for differentiating clear cell renal cell carcinoma
BACKGROUND: The aim of the study is to compare the diagnostic value of models that based on a set of CT texture and non-texture features for differentiating clear cell renal cell carcinomas(ccRCCs) from non-clear cell renal cell carcinomas(non-ccRCCs). METHODS: A total of 197 pathologically proven r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220848/ https://www.ncbi.nlm.nih.gov/pubmed/34162442 http://dx.doi.org/10.1186/s40644-021-00412-8 |
Sumario: | BACKGROUND: The aim of the study is to compare the diagnostic value of models that based on a set of CT texture and non-texture features for differentiating clear cell renal cell carcinomas(ccRCCs) from non-clear cell renal cell carcinomas(non-ccRCCs). METHODS: A total of 197 pathologically proven renal tumors were divided into ccRCC(n = 143) and non-ccRCC (n = 54) groups. The 43 non-texture features and 296 texture features that extracted from the 3D volume tumor tissue were assessed for each tumor at both Non-contrast Phase, NCP; Corticomedullary Phase, CMP; Nephrographic Phase, NP and Excretory Phase, EP. Texture-score were calculated by the Least Absolute Shrinkage and Selection Operator (LASSO) to screen the most valuable texture features. Model 1 contains the three most distinctive non-texture features with p < 0.001, Model 2 contains texture scores, and Model 3 contains the above two types of features. RESULTS: The three models shown good discrimination of the ccRCC from non-ccRCC in NCP, CMP, NP, and EP. The area under receiver operating characteristic curve (AUC)values of the Model 1, Model 2, and Model 3 in differentiating the two groups were 0.748–0.823, 0.776–0.887 and 0.864–0.900, respectively. The difference in AUC between every two of the three Models was statistically significant (p < 0.001). CONCLUSIONS: The predictive efficacy of ccRCC was significantly improved by combining non-texture features and texture features to construct a combined diagnostic model, which could provide a reliable basis for clinical treatment options. |
---|